
Underwater Networks Handbook
Mandar Chitre

Version 3.3.0

Table of Contents
Preface . Ê1

Part I: Introduction to UnetStack . Ê2

1. Introduction . Ê3

2. Getting started . Ê7

3. UnetStack basics . Ê14

Part II: Setting up underwater networks . Ê21

4. Unet basics . Ê22

5. Setting up small networks . Ê25

6. Routing in larger networks . Ê33

7. Wired and over-the-air links . Ê39

Part III: Building Unet applications . Ê43

8. Interfacing with UnetStack . Ê44

9. UnetSocket API . Ê45

10. Portals . Ê49

11. Wormholes . Ê55

12. AT script engine . Ê60

Part IV: Understanding UnetStack services . Ê66

13. Services and capabilities . Ê67

14. Datagram service . Ê73

15. Physical service . Ê80

16. Baseband service . Ê93

17. Ranging and synchronization . Ê104

18. Node information . Ê112

19. Address resolution . Ê114

20. Medium access control . Ê116

21. Single-hop links . Ê121

22. Routing and route maintenance . Ê126

23. Transport service . Ê129

24. Remote access . Ê131

25. State persistence . Ê134

26. Scheduler . Ê137

27. Shell . Ê140

Part V: Extending UnetStack . Ê142

28. Developing your own agents . Ê143

29. Implementing network protocols . Ê153

Part VI: Simulating underwater networks . Ê170

30. Writing simulation scripts . Ê171

31. Discrete event simulation . Ê181

32. Modems and channel models . Ê190

Appendices . Ê198

Appendix A: FAQs and resources . Ê199

Appendix B: List of services . Ê200

Appendix C: Command reference . Ê201

Appendix D: MySimpleHandshakeMac . Ê224

Preface

What is this book about?

About 71% of EarthÕs surface is covered with water, and about 97% of the water is in our oceans.
Although the ocean plays a critical role in everything from the air we breathe to daily weather and
climate patterns, we know very little about it. To really understand our oceans, we need a way to sense
and observe the numerous complex processes that drive the ocean environment, and to report the data
collected back to our data centers. While cabled ocean observatories have been established in a few
locations, they are too expensive to setup and maintain for large scale data collection across the vast
oceans.

Over the past few decades, wireless communication technology has percolated into every aspect of our
lives, and we have come to take it for granted. This technology forms the bedrock of wireless sensor
networks, allowing us to gather data with ease. Most of the wireless communication technology we use
relies on electromagnetic waves (e.g. radio waves, visible light) that get rapidly absorbed by water.
Hence the technology is ineffective for underwater communication, except at very short distances or
extremely low data rates. Most underwater communication systems today use acoustic waves, which
can travel long distances in the right conditions. At short distances in clear waters, optical
communication systems are sometimes used for high speed communications. Although these
communication technologies can be leveraged to establish point-to-point communication links, these
links do not integrate well with networking technology available today.

The Unet project strives to develop technologies that allow us to build communication networks that
extend underwater, be it via acoustic, optical, or even wired links. Some nodes in such networks may be
above water, while others are underwater. In this handbook, we explore how to build such networks
using UnetStack3 , an agent-based network technology that was developed in the Unet project.

Who should read this book?

This book is intended for readers interested in deploying networks that extend underwater, or
developing technology or protocols for use in underwater networks. Part I of the book provides an
overview, and is recommended for all readers. Part II is aimed at readers who wish to deploy and
maintain networks that extend underwater. Part III is aimed at application developers and software
engineers who wish to integrate with UnetStack-based networks. Parts IV and V dive deeper into
UnetStack, and are intended for researchers and engineers who wish to develop, simulate and test novel
underwater networking protocols.

The book assumes that readers have a basic understanding of traditional networking technology. While
expert software development skills are not required to benefit from this book, familiarity with scripting
or programming is essential. Readers with knowledge of Java, Groovy and/or Python will find it easy to
follow the examples in the text, but even readers without prior knowledge of these languages should be
able to pick up necessary skills along the way.

1

Part I: Introduction to UnetStack

2

Chapter 1. Introduction

1.1. What is a Unet?

The Internet has changed our lives beyond anyoneÕs wildest expectations, fundamentally changing the
way we interact, the way we learn, and the way we work. More recently, devices have started connecting
to the Internet, and communicating with other devices. This Internet of Things (IoT) has the potential to
have a huge impact on the way we understand our environment, and interact with it. Given that most of
our planetÕs surface is covered with water, would it then not make sense that at least some of these
devices might be in water? Some devices might measure ocean temperature and acidification to give us
a handle on climate change, while other devices might monitor fresh water quality to ensure safe
drinking water for us. Autonomous underwater vehicles (AUVs) may patrol our coastal waters looking
for intruders, or tracking down sources of pollution or nutients that encourage harmful algal blooms. Be
it static sensors or mobile AUVs, we need a way to connect them into a network that we can
communicate and interact with. The Unet project strives to develop technologies that allow us to do
precisely this. In this handbook, we explore how to use UnetStack3 , a technology developed as part of
the Unet project, to build communication networks that extend underwater.

Most wireless technologies today rely on electromagnetic waves that donÕt propagate well underwater.
Therefore, to extend IoT underwater, we typically need a mix of technologies!Ñ!cabled links where
possible, otherwise radio frequency (RF) wireless links above water, and mid-to-long range wireless
acoustic or short-range wireless optical links underwater. A "Unet" network (which we will simply call
Unet henceforth) consists of several nodes (underwater, on the surface of water, or above water) that
communicate over various types of links, as shown in Figure 1 .

Figure 1. A typical Unet consists of static and mobile nodes, both underwater and in air, with bidirectional
acoustic, optical, electromagnetic and cabled links connecting pairs of nodes.

A Unet consists of many Unet nodes (e.g. underwater sensor nodes, Autonomous Underwater Vehicles

3

https://www.unetstack.net

(AUVs), gateway buoys, ground stations, boats/ships) that generate, consume or relay data over a variety
of links:

¥ Acoustic links are typically used for mid-to-long range communication underwater. These links
usually offer low data rates and long propagation delay due to the slow speed of sound in water (as
compared to EM waves).

¥ Optical links are used for short range high data rate communications in water.

¥ RF links are used for mid-range communication in air.

¥ GSM links are used for near-shore connectivity through air.

¥ Satellite links are used for nodes that are far out at sea, and cannot be reached through GSM or RF
links. These links usually are expensive and offer relatively low data rates.

¥ Wired links (Ethernet, serial, fiber optic) are used for long-term static deployments underwater, or
over short distances where cabling is feasible.

¥ In some cases, nodes are retreived and data is transferred from them to other nodes in the network
on a regular basis, using physical media (e.g. USB drives, SD cards, etc). These links usually offer very
high data rates, but are only available intermittently. We dub such links as Sneakernet links .

A link is simply a logical connection between two nodes, often provided by equipping both the nodes
with modems. We summarize various types of links in Table 1 .

Table 1. Various types of links in a typical Unet, and their characteristics.

Link type Communication range # Data rate # Latency

High-frequency acoustic
(underwater)

Short Medium milliseconds

Mid-frequency acoustic
(underwater)

Medium Low seconds

Low-frequency acoustic
(underwater)

Long Very low seconds

Optical (underwater) Very short High Negligible

RF (in air) Medium Medium Negligible

GSM (in air, near shore) Medium Medium milliseconds

Satellite (in air) Long Low milliseconds

Wired/cabled Long (expensive) High Negligible

Sneakernet Long (intermittent) Very high hours or days
#Communication range and data rate vary substantially across devices and environments. Short range
usually is in tens of meters, medium range is several km, and long range is typically tens of km. Low
data rates are in hundreds of bps, medium data rates are in kbps, and high data rates are in Mbps.

1.2. UnetStack

Unet nodes are equipped with one or more network interfaces that allow communication over some of
these links. For example, to communicate over an underwater acoustic link, we need an underwater
acoustic modem . For an underwater optical link, we use an underwater optical modem . Most RF, GSM,
satellite or wired links would be accessed over a standard TCP/IP network interface. In all cases, each

4

Unet node would run the UnetStack software that allows us to effectively communicate over all of these
types of links using a common Application Programming Interface (API). UnetStack API bindings are
available for several languages including Java, Groovy, Python, Julia, C, Javascript, etc.

UnetStack has a several components, as depicted in Figure 2 :

¥ The Unet framework provides core services, messages, agents and APIs needed by UnetStack.

¥ The Unet basic stack is a collection of agents providing services and functionality required by
typical Unets. These agents, together with the Unet framework, are sufficient to build fully functional
Unets.

¥ The Unet premium stack is a collection of agents providing advanced functionality and/or higher
performance. Many of the premium agents provide similar services as the basic ones, but used
advanced techniques for better performance and bandwidth efficiency.

¥ The Unet simulator is able to simulate Unets with many nodes on a single computer. It can run in
realtime simulation mode for interactive testing of agents and protocols, working to provide the user
with the same user experience as in a real Unet. It can also be run in discrete event simulation mode
to perform a large number of simulations in a short time, allowing Monte Carlo testing and
performance evaluation of network protocols.

¥ The Unet IDE is an integrated development environment (IDE) for developers to develop, simulate
and test Unet agents and protocols. It also enables the developer to visualize and interact with
simulated networks.

¥ Unet audio is a soundcard-based realtime software defined open architecture acoustic modem
(SDOAM) that runs on desktop, laptop or single-board computers, and can be used to build and test
simple Unets. It is a great tool for not only developing and testing network protocols, but also
developing acoustic communication techniques.

The components are packaged into various editions . The community edition is downloadable free of
charge for educational and research purposes. It has all the components required to develop, simulate,
test and deploy Unets. The commercial and OEM editions package offer advanced functionality, better
performance and tighter integration with vendor-specific hardware.

5

https://unetstack.net/#editions
https://unetstack.net/#downloads

Figure 2. An overview of UnetStack components.

In the next few chapters, we will learn how to use UnetStack and how to customize it to meet our
networking needs. In some cases, it may be necessary to prototype and simulate a Unet before it is
actually implemented. We will also learn how to do that using the Unet simulator.

6

Chapter 2. Getting started
In this chapter, you will learn how to set up a simple 2-node underwater network with an acoustic link.
If you already own a couple of UnetStack-compatible acoustic modems, you can certainly use them! And
weÕll show you how to do that in Section 2.6. But let us first start with a simulated 2-node underwater
network, since all you need for this is a computer and the Unet simulator.

2.1. Setting up a simple simulated network

Download UnetStack community edition for your OS and untar/unzip it. Open a terminal window in the
simulatorÕs root folder and start the simulator:

$ bin/unet samples/2-node-network.groovy

2-node network

Node A: tcp://localhost:1101, http://localhost:8081/
Node B: tcp://localhost:1102, http://localhost:8082/

! If youÕre using Windows, you may need to use:
bin\unet samples\handbook\2-node-network.groovy

Open two web browser windows and key in the two http URLs shown above in each browser. This
should give you a command shell for node A and node B in the two browser windows.

2.2. Making your first transmission

On the command shell for node A, type:

> tell 0, 'hello!'
AGREE

Address 0 is a broadcast address, so you did not need to explicitly know the address of node B to
transmit a message to it. After a short delay, you should see the message on the command shell for node
B:

[232]: hello!

Congratulations!!! You have successfully transmitted your first message over the Unet.

The [232] that you see on node B is the from address (of node A). The simulator automatically allocates
addresses to each node. You can easily find out the addresses of both nodes (on either node):

7

https://unetstack.net/#downloads

> host('A')
232
> host('B')
31

You can try sending a message back from node B:

> tell 232, 'hi!'

and you should see the message [31]: hi! on node A after just a short delay.

"
You could have specified the hostname instead of the address when sending the
message:
tell host('A'), 'hi!' .

2.3. Propagation delay & ranging

In the simulation, nodes A and B are placed 1 km apart. Since the speed of sound in water is about 1500
m/s (exact sound speed depends on temperature, salinity and depth), the signals take about 0.7 s to travel
between the simulated nodes. This explains the short delays you see between sending the message from
one node and receiving it on the other. You can also make use of this time delay to measure the distance
between the nodes!

On node A, type:

> range host('B')
999.99976

You got an estimate of 1000 m for the range between the two nodes.

2.4. Sending & receiving application data

In real applications, you may want to send complex datagrams (messages) programmatically between
nodes. The simplest way to do this is via the UnetSocket API (Chapter 9). LetÕs try it!

On node B, type:

> s = new UnetSocket(this); !
> rx = s.receive() "

! Open a socket on node B (this refers to node B, since you are typing this on node BÕs command shell).
The semicolon (";") at the end of the statement simply prevents the shell from printing the return
value automatically.

" Receive a datagram. This call blocks until a datagram is available.

On node A, type:

8

> s = new UnetSocket(this);
> s.send('hello!' as byte[], 0) !
true
> s.close()

! Send 6 ASCII bytes ('hello!') to address 0 (broadcast address). The as byte[] is necessary in Groovy to
convert the string you specified into a byte array that the send() method expects.

Node B will receive the bytes as a RxFrameNtf message. You can check the data in the received datagram
on the command shell for node B, and close the socket:

RxFrameNtf:INFORM[type:DATA from:232 rxTime:4134355059 (6 bytes)]
> rx.data
[104, 101, 108, 108, 111, 33] !
> new String(rx.data) "
hello!
> s.close()

! These are the bytes representing the ASCII characters ['h', 'e', 'l', 'l', 'o', '!'].

" This puts together the ASCII characters in the byte array into a String.

"

While we demonstrated the use of the UnetSocket API in Groovy on the command shell,
the same commands work in a Groovy script or application, with one minor
modification. When the socket is opened, you will have to specify the connection
details (such as host name or IP address, and the API port number) of the modem (or
simulated modem) to connect to. For example, if UnetStack is running on localhost at
port number 1101, you can connect to it using: s = new UnetSocket('localhost', 1101);

2.5. Sending & receiving from a Python application

UnetStack provides API bindings for many languages (Java, Groovy, Python, Julia, C, Javascript, etc). We
demonstrate the use of the Python API here, but the usage is quite similar in other languages too.

WeÕll assume you have Python 3.x already installed. Let us start by installing the UnetStack Python API
bindings:

$ pip install unetpy
Collecting unetpy
Ê Using cached unetpy-3.1.0-py3-none-any.whl (6.9 kB)
Collecting fjagepy> =1.7.0
Ê Using cached fjagepy-1.7.0-py3-none-any.whl (12 kB)
Collecting numpy> =1.11
Ê Using cached numpy-1.18.2-cp37-cp37m-macosx_10_9_x86_64.whl (15.1 MB)
Installing collected packages: numpy, fjagepy, unetpy
Successfully installed fjagepy-1.7.0 numpy-1.18.2 unetpy-3.1.0

We will now write tx.py and rx.py scripts to transmit and receive a datagram respectively. We assume
that you have the two-node network setup from the previous section with node A and B available on
localhost API port 1101 and 1102 respectively.

9

tx.py

from unetpy import UnetSocket

s = UnetSocket('localhost' , 1101) !
s. send('hello!' , 0) "
s. close ()

! Connect to node A (localhost API port 1101).

" Broadcast a 6-byte datagram. Address 0 is the broadcast address.

rx.py

from unetpy import UnetSocket

s = UnetSocket('localhost' , 1102) !
rx = s. receive () "
print ('from node' , rx . from_, ':' , bytearray (rx . data). decode()) #
s. close ()

! Connect to node B (localhost API port 1102). Change the localhost to modem BÕs IP address and port
1102 to port 1100, if you are working with a modem.

" Blocking receive() will only return when a datagram is received or the socket is closed. If a datagram
is received, rx will contain the notification message with the details of the datagram.

In Python from is a keyword and cannot be used as an field name. We therefore use from_ for the
source node address.

First run python rx.py to start reception. Then, on a separate terminal window, run python tx.py to
initiate transmission. You should see the received datagram printed by the rx.py script:

$ python rx.py
from node 232 : hello!

"
Once you are done with your testing, it is time to shutdown the simulation. You can do
that by pressing Ctrl-C on the terminal where you started the simulator. Alternatively,
you can go to the shell of one of the nodes, and type: shutdown.

2.6. Using acoustic modems

So far, we have worked with a simulator. While the experience is similar, it is not exactly the same.
There is no real substitute for working with real modems. If you happen to have two UnetStack-
compatible acoustic modems, you can use them to set up a simple 2-node network. Put them in a water
body (tank, bucket, lake, sea, É), power them on, and connect each to a computer over Ethernet. The
setup would look something like this:

10

Figure 3. Two-node acoustic underwater network

On each computer, open a web browser and key in the IP address of the respective modem. This should
give us a command shell for node A and node B on the two computers.

"
If you only have one computer available, you can connect both modems to the same
Ethernet switch and connect to each modemÕs IP address in separate browser
windows.

When working with modems, you may need to adjust the transmit power level to a suitable level for use
in the water body that you have the modems in. Too high or too low a power level will not allow the
modems to communicate well. The modem transmit power can be adjusted using the plvl command.
Type help plvl on the command shell for node A to see examples of how the command is used:

> help plvl
plvl - get/set TX power level for all PHY channel types

Examples:
Ê plvl // get all power levels
Ê plvl -10 // set all power to -10 dB
Ê plvl(-10) // alternative syntax
Ê plvl = -10 // alternative syntax

"
The help command is your friend! Just type help to see a list of help topics. Type help
followed by a command name, topic or parameter (youÕll learn more about these later)
to get help information.

Assuming you have the modems in a bucket, youÕll need a fairly low transmit power. On node A, let us
set the transmit power to -50 dB and try a transmission:

> plvl -50
OK
> tell 0, 'hello!'
AGREE

11

