
Underwater Networks Handbook
Mandar Chitre

Version 3.3.0

Table of Contents
Preface . 1

Part I: Introduction to UnetStack . 2

1. Introduction . 3

2. Getting started . 7

3. UnetStack basics . 14

Part II: Setting up underwater networks. 21

4. Unet basics . 22

5. Setting up small networks . 25

6. Routing in larger networks. 33

7. Wired and over-the-air links . 39

Part III: Building Unet applications. 43

8. Interfacing with UnetStack. 44

9. UnetSocket API . 45

10. Portals . 49

11. Wormholes . 55

12. AT script engine . 60

Part IV: Understanding UnetStack services . 66

13. Services and capabilities. 67

14. Datagram service . 73

15. Physical service . 80

16. Baseband service . 93

17. Ranging and synchronization . 104

18. Node information . 112

19. Address resolution . 114

20. Medium access control . 116

21. Single-hop links. 121

22. Routing and route maintenance . 126

23. Transport service . 129

24. Remote access . 131

25. State persistence . 134

26. Scheduler . 137

27. Shell . 140

Part V: Extending UnetStack . 142

28. Developing your own agents . 143

29. Implementing network protocols. 153

Part VI: Simulating underwater networks . 170

30. Writing simulation scripts . 171

31. Discrete event simulation. 181

32. Modems and channel models . 190

Appendices. 198

Appendix A: FAQs and resources . 199

Appendix B: List of services . 200

Appendix C: Command reference. 201

Appendix D: MySimpleHandshakeMac . 224

Preface

What is this book about?
About 71% of Earth’s surface is covered with water, and about 97% of the water is in our oceans.
Although the ocean plays a critical role in everything from the air we breathe to daily weather and
climate patterns, we know very little about it. To really understand our oceans, we need a way to sense
and observe the numerous complex processes that drive the ocean environment, and to report the data
collected back to our data centers. While cabled ocean observatories have been established in a few
locations, they are too expensive to setup and maintain for large scale data collection across the vast
oceans.

Over the past few decades, wireless communication technology has percolated into every aspect of our
lives, and we have come to take it for granted. This technology forms the bedrock of wireless sensor
networks, allowing us to gather data with ease. Most of the wireless communication technology we use
relies on electromagnetic waves (e.g. radio waves, visible light) that get rapidly absorbed by water.
Hence the technology is ineffective for underwater communication, except at very short distances or
extremely low data rates. Most underwater communication systems today use acoustic waves, which
can travel long distances in the right conditions. At short distances in clear waters, optical
communication systems are sometimes used for high speed communications. Although these
communication technologies can be leveraged to establish point-to-point communication links, these
links do not integrate well with networking technology available today.

The Unet project strives to develop technologies that allow us to build communication networks that
extend underwater, be it via acoustic, optical, or even wired links. Some nodes in such networks may be
above water, while others are underwater. In this handbook, we explore how to build such networks
using UnetStack3, an agent-based network technology that was developed in the Unet project.

Who should read this book?
This book is intended for readers interested in deploying networks that extend underwater, or
developing technology or protocols for use in underwater networks. Part I of the book provides an
overview, and is recommended for all readers. Part II is aimed at readers who wish to deploy and
maintain networks that extend underwater. Part III is aimed at application developers and software
engineers who wish to integrate with UnetStack-based networks. Parts IV and V dive deeper into
UnetStack, and are intended for researchers and engineers who wish to develop, simulate and test novel
underwater networking protocols.

The book assumes that readers have a basic understanding of traditional networking technology. While
expert software development skills are not required to benefit from this book, familiarity with scripting
or programming is essential. Readers with knowledge of Java, Groovy and/or Python will find it easy to
follow the examples in the text, but even readers without prior knowledge of these languages should be
able to pick up necessary skills along the way.

1

Part I: Introduction to UnetStack

2

Chapter 1. Introduction

1.1. What is a Unet?
The Internet has changed our lives beyond anyone’s wildest expectations, fundamentally changing the
way we interact, the way we learn, and the way we work. More recently, devices have started connecting
to the Internet, and communicating with other devices. This Internet of Things (IoT) has the potential to
have a huge impact on the way we understand our environment, and interact with it. Given that most of
our planet’s surface is covered with water, would it then not make sense that at least some of these
devices might be in water? Some devices might measure ocean temperature and acidification to give us
a handle on climate change, while other devices might monitor fresh water quality to ensure safe
drinking water for us. Autonomous underwater vehicles (AUVs) may patrol our coastal waters looking
for intruders, or tracking down sources of pollution or nutients that encourage harmful algal blooms. Be
it static sensors or mobile AUVs, we need a way to connect them into a network that we can
communicate and interact with. The Unet project strives to develop technologies that allow us to do
precisely this. In this handbook, we explore how to use UnetStack3, a technology developed as part of
the Unet project, to build communication networks that extend underwater.

Most wireless technologies today rely on electromagnetic waves that don’t propagate well underwater.
Therefore, to extend IoT underwater, we typically need a mix of technologies — cabled links where
possible, otherwise radio frequency (RF) wireless links above water, and mid-to-long range wireless
acoustic or short-range wireless optical links underwater. A "Unet" network (which we will simply call
Unet henceforth) consists of several nodes (underwater, on the surface of water, or above water) that
communicate over various types of links, as shown in Figure 1.

Figure 1. A typical Unet consists of static and mobile nodes, both underwater and in air, with bidirectional
acoustic, optical, electromagnetic and cabled links connecting pairs of nodes.

A Unet consists of many Unet nodes (e.g. underwater sensor nodes, Autonomous Underwater Vehicles

3

https://www.unetstack.net

(AUVs), gateway buoys, ground stations, boats/ships) that generate, consume or relay data over a variety
of links:

• Acoustic links are typically used for mid-to-long range communication underwater. These links
usually offer low data rates and long propagation delay due to the slow speed of sound in water (as
compared to EM waves).

• Optical links are used for short range high data rate communications in water.

• RF links are used for mid-range communication in air.

• GSM links are used for near-shore connectivity through air.

• Satellite links are used for nodes that are far out at sea, and cannot be reached through GSM or RF
links. These links usually are expensive and offer relatively low data rates.

• Wired links (Ethernet, serial, fiber optic) are used for long-term static deployments underwater, or
over short distances where cabling is feasible.

• In some cases, nodes are retreived and data is transferred from them to other nodes in the network
on a regular basis, using physical media (e.g. USB drives, SD cards, etc). These links usually offer very
high data rates, but are only available intermittently. We dub such links as Sneakernet links.

A link is simply a logical connection between two nodes, often provided by equipping both the nodes
with modems. We summarize various types of links in Table 1.

Table 1. Various types of links in a typical Unet, and their characteristics.

Link type Communication range# Data rate# Latency

High-frequency acoustic
(underwater)

Short Medium milliseconds

Mid-frequency acoustic
(underwater)

Medium Low seconds

Low-frequency acoustic
(underwater)

Long Very low seconds

Optical (underwater) Very short High Negligible

RF (in air) Medium Medium Negligible

GSM (in air, near shore) Medium Medium milliseconds

Satellite (in air) Long Low milliseconds

Wired/cabled Long (expensive) High Negligible

Sneakernet Long (intermittent) Very high hours or days
#Communication range and data rate vary substantially across devices and environments. Short range
usually is in tens of meters, medium range is several km, and long range is typically tens of km. Low
data rates are in hundreds of bps, medium data rates are in kbps, and high data rates are in Mbps.

1.2. UnetStack
Unet nodes are equipped with one or more network interfaces that allow communication over some of
these links. For example, to communicate over an underwater acoustic link, we need an underwater
acoustic modem. For an underwater optical link, we use an underwater optical modem. Most RF, GSM,
satellite or wired links would be accessed over a standard TCP/IP network interface. In all cases, each

4

Unet node would run the UnetStack software that allows us to effectively communicate over all of these
types of links using a common Application Programming Interface (API). UnetStack API bindings are
available for several languages including Java, Groovy, Python, Julia, C, Javascript, etc.

UnetStack has a several components, as depicted in Figure 2:

• The Unet framework provides core services, messages, agents and APIs needed by UnetStack.

• The Unet basic stack is a collection of agents providing services and functionality required by
typical Unets. These agents, together with the Unet framework, are sufficient to build fully functional
Unets.

• The Unet premium stack is a collection of agents providing advanced functionality and/or higher
performance. Many of the premium agents provide similar services as the basic ones, but used
advanced techniques for better performance and bandwidth efficiency.

• The Unet simulator is able to simulate Unets with many nodes on a single computer. It can run in
realtime simulation mode for interactive testing of agents and protocols, working to provide the user
with the same user experience as in a real Unet. It can also be run in discrete event simulation mode
to perform a large number of simulations in a short time, allowing Monte Carlo testing and
performance evaluation of network protocols.

• The Unet IDE is an integrated development environment (IDE) for developers to develop, simulate
and test Unet agents and protocols. It also enables the developer to visualize and interact with
simulated networks.

• Unet audio is a soundcard-based realtime software defined open architecture acoustic modem
(SDOAM) that runs on desktop, laptop or single-board computers, and can be used to build and test
simple Unets. It is a great tool for not only developing and testing network protocols, but also
developing acoustic communication techniques.

The components are packaged into various editions. The community edition is downloadable free of
charge for educational and research purposes. It has all the components required to develop, simulate,
test and deploy Unets. The commercial and OEM editions package offer advanced functionality, better
performance and tighter integration with vendor-specific hardware.

5

https://unetstack.net/#editions
https://unetstack.net/#downloads

Figure 2. An overview of UnetStack components.

In the next few chapters, we will learn how to use UnetStack and how to customize it to meet our
networking needs. In some cases, it may be necessary to prototype and simulate a Unet before it is
actually implemented. We will also learn how to do that using the Unet simulator.

6

Chapter 2. Getting started
In this chapter, you will learn how to set up a simple 2-node underwater network with an acoustic link.
If you already own a couple of UnetStack-compatible acoustic modems, you can certainly use them! And
we’ll show you how to do that in Section 2.6. But let us first start with a simulated 2-node underwater
network, since all you need for this is a computer and the Unet simulator.

2.1. Setting up a simple simulated network
Download UnetStack community edition for your OS and untar/unzip it. Open a terminal window in the
simulator’s root folder and start the simulator:

$ bin/unet samples/2-node-network.groovy

2-node network

Node A: tcp://localhost:1101, http://localhost:8081/
Node B: tcp://localhost:1102, http://localhost:8082/


If you’re using Windows, you may need to use:
bin\unet samples\handbook\2-node-network.groovy

Open two web browser windows and key in the two http URLs shown above in each browser. This
should give you a command shell for node A and node B in the two browser windows.

2.2. Making your first transmission
On the command shell for node A, type:

> tell 0, 'hello!'
AGREE

Address 0 is a broadcast address, so you did not need to explicitly know the address of node B to
transmit a message to it. After a short delay, you should see the message on the command shell for node
B:

[232]: hello!

Congratulations!!! You have successfully transmitted your first message over the Unet.

The [232] that you see on node B is the from address (of node A). The simulator automatically allocates
addresses to each node. You can easily find out the addresses of both nodes (on either node):

7

https://unetstack.net/#downloads

> host('A')
232
> host('B')
31

You can try sending a message back from node B:

> tell 232, 'hi!'

and you should see the message [31]: hi! on node A after just a short delay.


You could have specified the hostname instead of the address when sending the
message:
tell host('A'), 'hi!'.

2.3. Propagation delay & ranging
In the simulation, nodes A and B are placed 1 km apart. Since the speed of sound in water is about 1500
m/s (exact sound speed depends on temperature, salinity and depth), the signals take about 0.7 s to travel
between the simulated nodes. This explains the short delays you see between sending the message from
one node and receiving it on the other. You can also make use of this time delay to measure the distance
between the nodes!

On node A, type:

> range host('B')
999.99976

You got an estimate of 1000 m for the range between the two nodes.

2.4. Sending & receiving application data
In real applications, you may want to send complex datagrams (messages) programmatically between
nodes. The simplest way to do this is via the UnetSocket API (Chapter 9). Let’s try it!

On node B, type:

> s = new UnetSocket(this); ①
> rx = s.receive() ②

① Open a socket on node B (this refers to node B, since you are typing this on node B’s command shell).
The semicolon (";") at the end of the statement simply prevents the shell from printing the return
value automatically.

② Receive a datagram. This call blocks until a datagram is available.

On node A, type:

8

> s = new UnetSocket(this);
> s.send('hello!' as byte[], 0) ①
true
> s.close()

① Send 6 ASCII bytes ('hello!') to address 0 (broadcast address). The as byte[] is necessary in Groovy to
convert the string you specified into a byte array that the send() method expects.

Node B will receive the bytes as a RxFrameNtf message. You can check the data in the received datagram
on the command shell for node B, and close the socket:

RxFrameNtf:INFORM[type:DATA from:232 rxTime:4134355059 (6 bytes)]
> rx.data
[104, 101, 108, 108, 111, 33] ①
> new String(rx.data) ②
hello!
> s.close()

① These are the bytes representing the ASCII characters ['h', 'e', 'l', 'l', 'o', '!'].

② This puts together the ASCII characters in the byte array into a String.



While we demonstrated the use of the UnetSocket API in Groovy on the command shell,
the same commands work in a Groovy script or application, with one minor
modification. When the socket is opened, you will have to specify the connection
details (such as host name or IP address, and the API port number) of the modem (or
simulated modem) to connect to. For example, if UnetStack is running on localhost at
port number 1101, you can connect to it using: s = new UnetSocket('localhost', 1101);

2.5. Sending & receiving from a Python application
UnetStack provides API bindings for many languages (Java, Groovy, Python, Julia, C, Javascript, etc). We
demonstrate the use of the Python API here, but the usage is quite similar in other languages too.

We’ll assume you have Python 3.x already installed. Let us start by installing the UnetStack Python API
bindings:

$ pip install unetpy
Collecting unetpy
 Using cached unetpy-3.1.0-py3-none-any.whl (6.9 kB)
Collecting fjagepy>=1.7.0
 Using cached fjagepy-1.7.0-py3-none-any.whl (12 kB)
Collecting numpy>=1.11
 Using cached numpy-1.18.2-cp37-cp37m-macosx_10_9_x86_64.whl (15.1 MB)
Installing collected packages: numpy, fjagepy, unetpy
Successfully installed fjagepy-1.7.0 numpy-1.18.2 unetpy-3.1.0

We will now write tx.py and rx.py scripts to transmit and receive a datagram respectively. We assume
that you have the two-node network setup from the previous section with node A and B available on
localhost API port 1101 and 1102 respectively.

9

tx.py

from unetpy import UnetSocket

s = UnetSocket('localhost', 1101) ①
s.send('hello!', 0) ②
s.close()

① Connect to node A (localhost API port 1101).

② Broadcast a 6-byte datagram. Address 0 is the broadcast address.

rx.py

from unetpy import UnetSocket

s = UnetSocket('localhost', 1102) ①
rx = s.receive() ②
print('from node', rx.from_, ':', bytearray(rx.data).decode()) ③
s.close()

① Connect to node B (localhost API port 1102). Change the localhost to modem B’s IP address and port
1102 to port 1100, if you are working with a modem.

② Blocking receive() will only return when a datagram is received or the socket is closed. If a datagram
is received, rx will contain the notification message with the details of the datagram.

③ In Python from is a keyword and cannot be used as an field name. We therefore use from_ for the
source node address.

First run python rx.py to start reception. Then, on a separate terminal window, run python tx.py to
initiate transmission. You should see the received datagram printed by the rx.py script:

$ python rx.py
from node 232 : hello!


Once you are done with your testing, it is time to shutdown the simulation. You can do
that by pressing Ctrl-C on the terminal where you started the simulator. Alternatively,
you can go to the shell of one of the nodes, and type: shutdown.

2.6. Using acoustic modems
So far, we have worked with a simulator. While the experience is similar, it is not exactly the same.
There is no real substitute for working with real modems. If you happen to have two UnetStack-
compatible acoustic modems, you can use them to set up a simple 2-node network. Put them in a water
body (tank, bucket, lake, sea, …), power them on, and connect each to a computer over Ethernet. The
setup would look something like this:

10

Figure 3. Two-node acoustic underwater network

On each computer, open a web browser and key in the IP address of the respective modem. This should
give us a command shell for node A and node B on the two computers.


If you only have one computer available, you can connect both modems to the same
Ethernet switch and connect to each modem’s IP address in separate browser
windows.

When working with modems, you may need to adjust the transmit power level to a suitable level for use
in the water body that you have the modems in. Too high or too low a power level will not allow the
modems to communicate well. The modem transmit power can be adjusted using the plvl command.
Type help plvl on the command shell for node A to see examples of how the command is used:

> help plvl
plvl - get/set TX power level for all PHY channel types

Examples:
 plvl // get all power levels
 plvl -10 // set all power to -10 dB
 plvl(-10) // alternative syntax
 plvl = -10 // alternative syntax


The help command is your friend! Just type help to see a list of help topics. Type help
followed by a command name, topic or parameter (you’ll learn more about these later)
to get help information.

Assuming you have the modems in a bucket, you’ll need a fairly low transmit power. On node A, let us
set the transmit power to -50 dB and try a transmission:

> plvl -50
OK
> tell 0, 'hello!'
AGREE

11


A poor acoustic connection between modems can lead to multiple retransmits that can
take many tens of seconds before successful delivery of message, or eventual delivery
failure.

If all goes well, you should see the message on node B:

[232]: hello!

Of course you’ll see a different "from" address than the one shown in the example here. It will be the
actual address of your modem A. In case you don’t see the message on node B after a few seconds, you
may want to adjust the power level up or down and try again.


All the other examples shown earlier in this chapter will also work with the modems.
You’ll just need to replace the localhost with the appropriate modem IP address, and
the API port for the modem will usually be 1100.

2.7. Transmitting and recording arbitrary acoustic
waveforms
If you have UnetStack-compatible acoustic modems that support the BASEBAND service, you can use
them to transmit and record arbitrary acoustic signals. Even without access to modems, you can try this
out using the Unet audio SDOAM — a fully functional modem that uses your computer’s soundcard for
transmission and reception. To start Unet audio, open a terminal window in the simulator’s root folder
and type:

$ bin/unet audio
Modem web: http://localhost:8080/

This should start up the SDOAM and open a browser with a command shell accessing the modem. If the
browser does not automatically open, just enter the modem web URL shown above in your browser. At
the command shell, you can try transmitting a message:

> tell 0, 'hello!'
AGREE

You should hear the transmission from your computer speaker! If you don’t, check your speaker volume
and try again.


If you have 2 computers running the Unet audio SDOAM, you can receive the
transmitted signal on the second computer and see the received message: [1]: hello!.

Next, try sending a simple 10 kHz tonal signal:

> bbtx cw(10000, 0.5) ①
AGREE
phy >> TxFrameNtf:INFORM[txTime:4104441] ②

12

① Request transmission of a continuous wave (cw) signal of 10 kHz and 0.5 seconds duration.

② Notification that the signal was successfully transmitted.

You should hear a 0.5 second 10 kHz tone from your computer speaker. The bbtx command requests
transmission of a baseband signal. The function cw() generates such a signal based on the specified
frequency and duration.

To generate the baseband representation of the signal you wish to transmit, you will need to know the
carrier frequency and the baseband sampling rate of the modem:

> phy.basebandRate
12000.0
> phy.carrierFrequency
12000.0

For the Unet audio SDOAM, the carrier frequency is 12 kHz and the baseband sampling rate is 12 kSa/s.


The baseband signal is represented as a floating point array with alternate real and
imaginary components in Java/Groovy. For languages that support complex numbers
(e.g. Python, Julia), the signal is simply an array of complex numbers.

You can equally easily ask the SDOAM to make an acoustic recording for you:

> bbrec 12000 ①
AGREE
phy >> RxBasebandSignalNtf:INFORM[adc:1 rxTime:1911353 rssi:-61.2 fc:12000.0 fs:12000.0 (12000 baseband
samples)]

① Request recording of 12000 baseband samples (1 second duration).

The recording is sent to you as a RxBasebandSignalNtf message with 12000 baseband samples in the
signal field. You can check the first 32 samples:

> ntf.signal[0..31]
[-3.735939E-4, 6.7323225E-4, 7.94507E-4, 5.0331384E-4, 0.0012656008, -0.0010853912, -2.0923217E-4,
-8.322359E-4, 1.5215082E-4, 2.417963E-4, -3.0220395E-5, -5.190366E-4, -6.904016E-4, -7.3395047E-4,
3.9846844E-5, 5.161132E-4, 0.0013477469, 6.2060537E-4, 1.00925405E-4, -3.974573E-4, -8.8431453E-4,
-5.807383E-4, -5.730035E-4, -8.5867435E-4, -9.026667E-4, 2.2320295E-5, -1.7575005E-5, 0.0010946163,
7.7881676E-4, -3.7582265E-4, -9.449492E-4, -1.7722705E-4]

The values you’d see would natually be different, since the SDOAM would have recorded whatever
sounds it heard using your computer’s microphone.



While we illustrated the use of the BASEBAND service using the bbtx and bbrec
commands, the same functionality can be accessed using the TxBasebandSignalReq and
the RecordBasebandSignalReq messages. This is useful if you want to access the
functionality from an agent or through the external gateway API (e.g. from a Jupyter
Python notebook). You will learn how to do this in Chapter 16.

13

Chapter 3. UnetStack basics
UnetStack is an agent-based network stack. Each agent is similar to a layer in a traditional network stack,
but has more flexibility to use the scarce resources (bandwidth, energy, etc) in the Unet more efficiently.
In order to develop Unet applications, we need to understand some basic concepts in UnetStack.

3.1. The command shell
The simplest way to interact with UnetStack is via the command shell (or simply shell). The shell may be
accessed on the console, a TCP/IP port or via the web interface. In Chapter 2, we have already seen how
to set up a 2-node network and access the command shell for each of the nodes using a web browser. For
the rest of this section, we assume that you have shells open on nodes A and B.

On node A, we can ask for a list of agents running:

> ps
statemanager: org.arl.unet.state.StateManager - IDLE
remote: org.arl.unet.remote.RemoteControl - IDLE
rdp: org.arl.unet.net.RouteDiscoveryProtocol - IDLE
ranging: org.arl.unet.localization.Ranging - IDLE
uwlink: org.arl.unet.link.ReliableLink - IDLE
node: org.arl.unet.nodeinfo.NodeInfo - IDLE
websh: org.arl.fjage.shell.ShellAgent - RUNNING
simulator: org.arl.unet.sim.SimulationAgent - IDLE
phy: org.arl.unet.sim.HalfDuplexModem - IDLE
bbmon: org.arl.unet.bb.BasebandSignalMonitor - IDLE
arp: org.arl.unet.addr.AddressResolution - IDLE
transport: org.arl.unet.transport.SWTransport - IDLE
router: org.arl.unet.net.Router - IDLE
mac: org.arl.unet.mac.CSMA - IDLE

We can further ask for more details of a specific agent:

14

> phy
« Half-duplex modem »

Generic half duplex modem simulator.

[org.arl.unet.DatagramParam]
 MTU ⇒ 56
 RTU ⇒ 56

[org.arl.unet.bb.BasebandParam]
 basebandRate = 12000.0
 carrierFrequency = 12000.0
 maxPreambleID ⇒ 4
 maxSignalLength = 65536
 signalPowerLevel = -42.0

[org.arl.unet.phy.PhysicalParam]
 busy ⇒ false
 maxPowerLevel = 0.0
 minPowerLevel = -96.0
 propagationSpeed ⇒ 1534.4574
 refPowerLevel = 185.0
 rxEnable = true
 rxSensitivity = -200.0
 time ⇒ 3074996380
 timestampedTxDelay = 1.0

[org.arl.unet.sim.HalfDuplexModemParam]
 basebandRxDuration = 1.0
 clockOffset = 2932.3245

We asked for details of the agent phy, and we got a list of parameters supported by the agent. We can get
or set individual parameters of the agent:

> phy.MTU
56
> phy.rxEnable
true
> phy.rxEnable = false
false
> phy.rxEnable
false
> phy.rxEnable = true
true

To find out more about a specific parameter, we can ask for help on the parameter:

> help phy.MTU
phy.MTU - maximum transmission unit (MTU) in bytes
> help phy.rxEnable
phy.rxEnable - true if reception enabled

We can also ask for help on an agent:

15

> help phy
phy - access to physical service

Examples:
 phy // access physical parameters
 phy[CONTROL] // access control channel parameters
 phy[DATA] // access data channel parameters
 phy << msg // send request msg to physical agent
 phy.rxEnable = false // disable reception of frames

Commands:

- pclr - clear PHY queues
- plvl - get/set TX power level for all PHY channel types

Parameters:

The following parameters are available on all modems. Additional modem
dependent parameters are also available. For information on these
parameters type "help modem".

- phy.MTU - maximum transmission unit (MTU) in bytes
- phy.RTU - recommended data transfer size in bytes
- phy.rxEnable - true if reception enabled
- phy.propagationSpeed - propagation speed in m/s
- phy.timestampedTxDelay - delay before TX of timestamped frames
- phy.time - physical layer time (us)
- phy.busy - true if modem is TX/RX a frame, false if idle
- phy.refPowerLevel - reference power level in dB re uPa @ 1m
- phy.maxPowerLevel - maximum supported power level (relative to reference)
- phy.minPowerLevel - minimum supported power level (relative to reference)

Channel Parameters:

The following parameters are available on all modems. Additional modem
dependent parameters are also available. For information on these
parameters type "help modem".

- phy[].MTU - maximum transmission unit (MTU) in bytes
- phy[].RTU - recommended data transfer size in bytes
- phy[].dataRate - effective frame data rate (bps)
- phy[].frameDuration - frame duration (seconds)
- phy[].powerLevel - powel level used for transmission (relative to reference)
- phy[].errorDetection - number of bytes for error detection
- phy[].frameLength - frame length (bytes)
- phy[].maxFrameLength - maximum settable frame length (bytes)
- phy[].fec - forward error correction code
- phy[].fecList - list of available forward error correction codes

From this help, we see that phy agent also supports channel parameters (also known as indexed
parameters). It supports two logical channels, CONTROL (1) and DATA (2). The CONTROL channel is
meant for low-rate robust data transmission, whereas the DATA channel is typically configured for
higher rate data transmission. Channel parameters work in the same way as normal parameters, but
with an index:

16

> phy[CONTROL]
« PHY »

[org.arl.unet.DatagramParam]
 MTU ⇒ 16
 RTU ⇒ 16

[org.arl.unet.phy.PhysicalChannelParam]
 dataRate = 202.10527
 errorDetection ⇒ 1
 fec ⇒ 0
 fecList ⇒ null
 frameDuration ⇒ 0.95
 frameLength = 24
 janus = false
 llr ⇒ false
 maxFrameLength = 128
 powerLevel = -42.0

> phy[DATA]
« PHY »

[org.arl.unet.DatagramParam]
 MTU ⇒ 56
 RTU ⇒ 56

[org.arl.unet.phy.PhysicalChannelParam]
 dataRate = 731.4286
 errorDetection ⇒ 1
 fec ⇒ 0
 fecList ⇒ null
 frameDuration ⇒ 0.7
 frameLength = 64
 janus = false
 llr ⇒ false
 maxFrameLength = 512
 powerLevel = -42.0

> phy[CONTROL].MTU
16
> phy[CONTROL].frameLength = 32
32
> phy[CONTROL].frameLength
32
> phy[CONTROL].MTU
24
> phy[CONTROL].frameLength = 24
24


The actual parameters you see may differ if you are working with a modem,
depending on the specific capabilities of the modem. Use help to find out more about
any listed parameter on your modem, or refer to the modem’s documentation for
further information.

Most agents also support some commands. For example, the phy agent supports the plvl command:

17

> help plvl
plvl - get/set TX power level for all PHY channel types

Examples:
 plvl // get all power levels
 plvl -10 // set all power to -10 dB
 plvl(-10) // alternative syntax
 plvl = -10 // alternative syntax

> plvl
phy[1].powerLevel = -42.0
phy[2].powerLevel = -42.0
phy[3].powerLevel = -42.0
phy.signalPowerLevel = -42.0
> plvl -20
OK
> plvl
phy[1].powerLevel = -20.0
phy[2].powerLevel = -20.0
phy[3].powerLevel = -20.0
phy.signalPowerLevel = -20.0

The plvl command simply displays or sets the powerLevel parameter of all channels. The same can be
manually accomplished by setting or getting individual parameters, if desired:

> phy[1].powerLevel
-20
> phy[1].powerLevel = -10
-10
> phy[1].powerLevel
-10
> plvl
phy[1].powerLevel = -10.0
phy[2].powerLevel = -20.0
phy[3].powerLevel = -20.0
phy.signalPowerLevel = -20.0


While plvl seems like a command to just set/get a powerLevel parameter, it does that for
several channels in one go. This can save you a lot of time and typing — to achieve the
same thing manually, you’d be typing 4 commands!

3.2. Interacting with agents using messages
While you can access a lot of functionality via parameters and commands, to fully harness the power of
UnetStack, we require an understanding of the underlying messaging system between the agents. All
agents support messages that expose their functionality. In fact, all parameters and commands are
implemented by exchanging messages between the shell agent and other agents. In this section, we’ll
take a brief look at how messaging between agents works.


All parameters and commands are implemented by exchanging messages between the
shell agent and other agents. When you get/set a parameter, all the shell is doing is
sending a ParameterReq message to the appropriate agent, and showing you the
ParameterRsp message that the agent responds with.

18

Typically, we would want to send a request to an agent and get a response message back. This can be
accomplished with the request call (or the equivalent alias <<) on the agent:

> phy << new TxFrameReq(data: [1,2,3])
AGREE
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:2913909740]

Here we made a request to the phy agent to transmit some data. The agent responded with an AGREE
response, shortly followed by a TxFrameNtf notification from phy telling us that the transmission was
successful.


A frame is simply a datagram at the physical layer, also sometimes called a "packet".
We prefer the term "frame" when working at the physical layer, but the distinction
between frames and datagrams is unimportant at this point in time. We will come back
to this later, in Chapter 15.

We can also use the return value in a condition, but we need to remember that the return value from the
request is a message:

> x = phy << new TxFrameReq();
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:3381446740]
> x
AGREE
> x.class
class org.arl.fjage.Message
> x.performative
AGREE
> if (x.performative == Performative.AGREE) print 'OK'
OK


The semicolon ";" at the end of the first statement prevents the return value from being
printed on the shell.

Unsolicited notification messages can be received by subscribing to the topic of interest. For example, on
node B, we can subscribe to physical layer events on node B:

> subscribe phy

Now, if we broadcast a frame from node A using phy << new TxFrameReq(), we will see the relevant
reception events on node B:

phy >> RxFrameStartNtf:INFORM[type:CONTROL rxTime:1765508396]
phy >> RxFrameNtf:INFORM[type:CONTROL from:232 rxTime:1765508396]

The first event RxFrameStartNtf is triggered as soon as the frame is detected at node B. The second event
RxFrameNtf is triggered when the frame is fully received, demodulated and successfully decoded at the
receiver.

If all of this seems somewhat confusing to you, don’t worry about it. Most of the basic functionality of the

19

stack can be accessed without having to deal with messages directly. As we need functionality that
requires an understanding of messaging, we’ll gradually introduce them in later chapters.

3.3. Shell scripting
The default UnetStack shell accepts any Groovy code, and so is very flexible:

> 1+2
3
> 5.times { print it }
0
1
2
3
4

You can also define closures (if you’re not familiar with closures, you can think of them as functions for
now):

> tx2 = {
- 2.times {
- phy << new TxFrameReq()
- }
- };

and call them later:

> tx2
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:3911898740]
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:3912307740]


You can write Groovy scripts and store them in the scripts folder with an extension
.groovy. You can then invoke them from the shell by simply typing the name of the
script (without the extension).

This only scratches the surface of what the command shell is capable of. However, it should provide you
a basic understanding of how the shell works, and illustrate its power. To understand more, we suggest
that you explore the online help. As you further understand the UnetStack and fjåge API, you’ll develop
expertise on using the shell.

20

https://groovy-lang.org

Part II: Setting up underwater
networks

21

Chapter 4. Unet basics
Now that we have a basic understanding of how UnetStack works, it is time to take the next step into
setting up and configuring underwater networks, or simply Unets.

4.1. Node names and addresses
Unet nodes are identified by unique addresses within the Unet. Small Unets might use 8-bit addresses,
supporting up to 255 different nodes. Larger Unets might use 16-bit addresses, supporting up to 65535
different nodes in the network. The address space is controlled by the parameter node.addressSize, and
must be set to the same value (either 8 or 16) on all nodes in a Unet.


The code examples in this chapter assume that you have a simulated Unet (the 2-node-
network simulation from Chapter 2) running, and you’re connected to the shell of one
of the nodes. However, if you have access to modems, you may choose to use the real
Unet and connect to the shell of one of the modem nodes.

To check the current address size on your node:

> node
« Node information »

Manages and maintains node information and attributes.

[org.arl.unet.nodeinfo.NodeInfoParam]
 nodeName = A
 address = 232
 addressSize = 8
 canForward = true
 mobility = false
 location = [0.0, 0.0, -15.0]
 origin = [NaN, NaN]

Some node parameters have not been shown in the above listing for brevity.

Address 0 is a broadcast address. All other addresses may be assigned to nodes in a Unet. Each Unet node
is also associated with a node name (node.nodeName). If a node name is not explicity set, it defaults to the
string representation of the node address. Descriptive node names may be used, if desired:

22

> node.nodeName = 'buoy_A'
buoy_A
> node
« Node information »

Manages and maintains node information and attributes.

[org.arl.unet.nodeinfo.NodeInfoParam]
 nodeName = buoy_A
 address = 232
 addressSize = 8
 canForward = true
 mobility = false
 location = [0.0, 0.0, -15.0]
 origin = [NaN, NaN]

It is recommended that, if descriptive node names are used, the corresponding node addresses be set
using the ADDRESS_RESOLUTION service. This ensures that name-to-address resolution leads to the
correct address for the node. The ADDRESS_RESOLUTION service can be accessed via the host() shell
command:

> host('buoy_A')
68
> node.address = host(node.nodeName)
68

The default ADDRESS_RESOLUTION agent in the UnetStack maps node names to node addresses using a
hash function. The method reduces network traffic for host name resolution, but can lead to address
conflicts between nodes if two names happen to map to the same address. It is the responsibility of the
network engineer to resolve address conflicts manually during the setup of the network, if the default
ADDRESS_RESOLUTION agent is used. For small networks, this is simply a matter of checking that all
chosen node names in the network lead to unique node addresses:

> ['buoy_A', 'auv_1', 'auv_2', 'sensor_adcp1', 'sensor_ctd1'].each { name ->
- print "${name}: ${host(name)}"
- };
buoy_A: 68
auv_1: 150
auv_2: 109
sensor_adcp1: 43
sensor_ctd1: 14

4.2. Protocol numbers
Datagrams represent packets of data sent between nodes. Each node may have multiple agents and
applications running on it, and so we need a way to specify which application the datagram is meant for.
To aid with this, each datagram is associated with a protocol number that identifies the consumer on the
destination node that the datagram is intended for. The consumer may be an agent or an end-user
application. Protocol numbers can be thought of as port numbers in TCP/IP or UDP/IP.

The consumer may be an agent or an end-user application. Protocol number 0 (Protocol.DATA) is used for
generic application data. Protocol numbers from 1 to Protocol.USER-1 (31) are reserved for use by default

23

stack agents. Protocol numbers from Protocol.USER (32) to Protocol.MAX (63) are available for end-user
applications to use.

On node B, type:

> s = new UnetSocket(this);
> s.bind(Protocol.USER); // listen for datagrams with Protocol.USER
> rx = s.receive()

to wait for a reception with Protocol.USER.

On node A, type:

> s = new UnetSocket(this);
> s.connect(host('B'), Protocol.DATA); // send datagrams with Protocol.DATA
> s.send('hi!' as byte[]);
> s.connect(host('B'), Protocol.USER); // send datagrams with Protocol.USER
> s.send('hello!' as byte[]);
> s.close()

Node B will receive only the second message, since it is listening for datagrams with Protocol.USER only.
We can confirm this by checking the data in the received datagram on the command shell for node B,
and close the socket:

DatagramNtf:INFORM[from:68 to:31 protocol:32 (6 bytes)]
> new String(rx.data)
hello!
> s.close()

24

Chapter 5. Setting up small networks

5.1. Netiquette testbed
The Netiquette testbed in Singapore is a 3-node network that is deployed at sea (see Figure 4), and
accessible over the Internet. Nodes A and B are cabled seabed mounted nodes, while node C is a solar-
powered buoy. We use a simulated version of the Netiquette testbed to learn how to set up and operate
small networks.

Figure 4. Netiqutte testbed

To start the simulated network, we simply run the netq-network.groovy simulation script:

$ bin/unet samples/netq-network.groovy

Netiquette 3-node network

Node A: tcp://localhost:1101, http://localhost:8081/
Node B: tcp://localhost:1102, http://localhost:8082/
Node C: tcp://localhost:1103, http://localhost:8083/



The port numbers you see in the examples above aren’t particularly special. They are
simply whatever were chosen by the developer of the simulation, and can be found in
the netq-network.groovy script. The only restriction on the choice is that placed by the
OS — usually port numbers below 1024 are reserved and unavailable to users. Of
course, they must also be unique and unused by other applications running on your
computer.

25

5.2. Node names & addresses
We start off by checking the configuration of each node:

Node A

> node
« Node information »

Manages and maintains node information and attributes.

[org.arl.unet.nodeinfo.NodeInfoParam]
 address = 232
 addressSize = 8
 location = [121.0, 137.0, -10.0]
 mobility = false
 nodeName = A
 origin = [1.216, 103.851]

Node B

> node
« Node information »

Manages and maintains node information and attributes.

[org.arl.unet.nodeinfo.NodeInfoParam]
 address = 31
 addressSize = 8
 location = [160.0, -232.0, -15.0]
 mobility = false
 nodeName = B
 origin = [1.216, 103.851]

Node C

> node
« Node information »

Manages and maintains node information and attributes.

[org.arl.unet.nodeinfo.NodeInfoParam]
 address = 74
 addressSize = 8
 location = [651.0, 140.0, -5.0]
 mobility = false
 nodeName = C
 origin = [1.216, 103.851]

All nodes are configured to use 8-bit addresses. Node A has is address 232, node B is 31, and node C is 74.
The origin is set to GPS location 1.216° N, 103.851° E. Locations are measured in meters relative to this
origin, with x axis pointing east, and y axis pointing north. The mobility of the nodes is set to false to
indicate that the nodes are static (for mobile nodes, mobility should be set to true).

26



In the simulated network, all of the node parameters are correctly setup by the
simulator. In a real network, you may need to setup each node by manually setting the
appropriate parameters. To ensure that the nodes retain the parameters between
reboots, once a node is setup, simply run savestate on the node. This creates a saved-
state.groovy file in the scripts folder with the saved settings. The settings are then
automatically loaded when the node is rebooted.

5.3. Connectivity & ranging
Let us first check the connectivity between the nodes:

Node A

> ping host('B')
PING 31
Response from 31: seq=0 rthops=2 time=2507 ms
Response from 31: seq=1 rthops=2 time=2852 ms
Response from 31: seq=2 rthops=2 time=2852 ms
3 packets transmitted, 3 packets received, 0% packet loss
> ping host('C')
PING 74
Response from 74: seq=0 rthops=2 time=2600 ms
Response from 74: seq=1 rthops=2 time=2634 ms
Response from 74: seq=2 rthops=2 time=2737 ms
3 packets transmitted, 3 packets received, 0% packet loss

The connectivity from node A to nodes B and C looks good. What about the connectivity from node B to
node C?

Node B

> ping host('C')
PING 74
Response from 74: seq=0 rthops=2 time=2810 ms
Response from 74: seq=1 rthops=2 time=2666 ms
Response from 74: seq=2 rthops=2 time=2742 ms
3 packets transmitted, 3 packets received, 0% packet loss

Looks good too!


In this simulation, everything checks out nicely. But, in the real world, there may be
packet loss to contend with. We will see how to handle those in later chapters.

We can also check cross-check that the routes from node A to nodes B and C are direct:

Node A

> trace host('B')
[232, 31, 232]
> trace host('C')
[232, 74, 232]

The first trace shows that the datagram originated at node A (address 232), reached node B (address 31),

27

and was sent back to node A. The second trace similarly went from node A to node C (address 74) and
back. No hops in between, since our network is fully connected.

We can also make range measurements (in meters) between the nodes:

Node A

> range host('A')
0.0
> range host('B')
371.08856
> range host('C')
530.0323

Node B

> range host('A')
371.08856
> range host('B')
0.0
> range host('C')
616.0877

5.4. Sending text messages
Once we have connectivity, we can of course send text messages from the shell:

Node A

> tell host('B'), 'hello!'
AGREE

and we see the text message on node B:

Node B

[232]: hello!

We have already seen in Chapter 2 and Section 4.2 on how to send text messages using the UnetSocket
API from the shell, as well as from external applications. Hence we won’t dwell on it here.

5.5. File transfer and remote access
Data is often stored in files. Transferring files between nodes is a common requirement. File transfers
and remote access is disabled by default. Let us enable this on node B:

28

Node B

> remote
« Remote control »

Text messaging and remote command execution service.

[org.arl.unet.remote.RemoteControlParam]
 cwd = unet-3.2.0/scripts
 dsp = transport
 enable = false
 groovy = true
 reliability = true
 shell = websh

> remote.enable = true
true

Now we can send & receive files, and run remote commands on node B. Let’s try it from node A:

Node A

> B = host('B')
31
> rsh B, 'tell me,"hi!"' ①
AGREE
[31]: hi! ②
> file('abc.txt').text = 'demo'; ③
> ls ④
abc.txt [4 bytes]
README.md [96 bytes]
> fput B, 'abc.txt' ⑤
AGREE

① Ask node B to send a "hi!" back to me. The variable me is automatically defined to be the source node
address during the execution of the shell command when Groovy extensions are enabled
(remote.groovy = true).

② On node A, we receive a "hi!" after a short delay.

③ Create a file abc.txt with demo as content.

④ List local files to check that we have a 4-byte file called abc.txt.

⑤ Send file abc.txt to node B.

On the shell for node B, we see the notification that the file abc.txt was successfully received:

Node B

remote >> RemoteFileNtf:INFORM[from:232 filename:abc.txt (4 bytes)]



Although we demonstrated file transfers between nodes with the simulator, all
simulated nodes are running on your machine and so sharing the filesystem. When the
file abc.txt was transferred from node A to B, the same file was simply overwritten,
since it was created in the same folder. You could easily verify this by checking the
modification time of the file on the filesystem before and after the transfer.

29

You can also use fget to receive a file from a remote node, but you have to remember to set
remote.enable = true on the receiving node:

Node A

> remote.enable = true
true
> fget B, 'abc.txt'
AGREE
remote >> RemoteFileNtf:INFORM[from:31 filename:abc.txt (4 bytes)]
> fget B, 'def.txt'
AGREE
remote >> RemoteFailureNtf:INFORM[RemoteFileGetReq:REQUEST[to:31 filename:def.txt] reason:no-file]

The last command failed to get file def.txt , as it does not exist on node B.

When we send commands to execute on a remote node, they are usually silently executed and the
output is not sent back. If we want the output to be shown to us, we need to explicity ask for it using
tell. Since this is often required, we have a simple Groovy extensions shortcut ? to do this for us:

Node A

> rsh B, 'tell me,node.nodeName'
AGREE
[31]: B
> rsh B, '?node.nodeName'
AGREE
[31]: B
> rsh B, '?ls'
AGREE
[31]: abc.txt [4 bytes]
README.md [759 bytes]
> rsh B, '?1+2'
AGREE
[31]: 3
> rsh B, '?"You are ${me}, I am ${node.address}"'
AGREE
[31]: You are 232, I am 31
> rsh B, '?range '+host('C')
AGREE
[31]: 616.0877

Sometimes we are not interested in the output, but simply want an acknowledgement that the command
was successfully executed. For example, if we set the transmission power on a remote node, we want to
know that it was set. That can be requested using the ack function.

Node A

> ack on
> rsh B, 'plvl -6'
AGREE
remote >> RemoteSuccessNtf:INFORM[RemoteExecReq:REQUEST[to:31 command:plvl -6 ack:true]]
> ack off

30

5.6. Node locations & coordinate systems
As seen in Section 5.2, some network nodes may know their own locations. This is useful for location-
based routing and other applications. Depending on the application needs, we may wish to use different
coordinate systems when setting up a network. There are 4 basic options to choose from:

No coordinates

We do not know or care about each node’s location.

Local coordinates

We wish to work in a local coordinate system, with only relative locations of the nodes being
important.

Georeferenced local coordinates

We wish to work in a local coordinate system, with relative node locations specified in local
coordinates. The GPS coordinate of the origin of the local coordinate system is specified.

GPS coordinates

We wish to specify the GPS location of each node, without defining a local coordinate system.

When node locations are not accurately known, we can opt not to define any coordinate system. Local
coordinate systems are preferred in applications where such a coordinate system can be agreed upon
for the entire network. Range computation and localization is easier to do in local coordinates. GPS
coordinates are used when node location is important, but a local coordinate system cannot be easily
defined (e.g. ad hoc network with no prior knowledge of area of operation).

UnetStack supports all 4 options through a set of simple conventions:

No coordinates

node.origin = [], node.location = [] for all nodes.

Local coordinates

node.origin = [Float.NaN, Float.NaN] for all nodes. node.location = [x, y, z] is specified as a 3-
tuple in meters. The z axis points upwards (with sealevel being considered 0 m, and the half-space
underwater having negative z coordinates), but the x and y axes are arbitrarily chosen.

Georeferenced local coordinates

node.origin = [latitude, longitude] for all nodes, with latitude and longitude being the commonly
agreed origin location. node.location = [x, y, z] is specified as a 3-tuple in meters. The x axis points
east, y axis points north, and the z axis points upwards (with sealevel being considered 0 m, and the
half-space underwater having negative z coordinates).

GPS coordinates

node.origin = [] for all nodes, and node.location = [latitude, longitude, z] where the z axis points
upwards (with sealevel being considered 0 m, and the half-space underwater having negative z
coordinates).

31


The Unet simulator requires a local coordinate system to be defined, and so only local
coordinates or georeferenced local coordinates must be used in the simulator.

In Section 5.3, we measured the acoustic range between nodes A and B to about about 371 m. We can
check this against distance computed from the location of nodes A and B. We first get the location of
node A:

Node A

> node.location
[121.0, 137.0, -10.0]

and then compute the distance to it on node B:

Node B

> distance(node.location, [121.0, 137.0, -10.0])
371.0889

We see that it agrees well with the acoustic range!

It is often necessary to convert between the GPS coordinate system and the local coordinate system. To
aid in this, UnetStack provides a set of utility functions:

Node A

> gps = new org.arl.unet.utils.GpsLocalFrame(node.origin); // set origin GPS
> gps.toGps(node.location[0..1]) // local to GPS
[1.217239, 103.852087] // GPS coordinates of node A
> gps.toLocal(1.21723898, 103.8520872) // GPS to local
[120.9994, 136.9999]
> node.location
[121.0, 137.0, -10.0]

The GpsLocalFrame class has additional constructors and utility methods to work with GPS coordinates in
degrees, minutes and seconds, if desired.

32

Chapter 6. Routing in larger networks

6.1. MISSION 2013 network
The MISSION 2013 experiment in Singapore featured a 7-node network that was deployed at sea (see
Figure 5) for several weeks. The network operated in a challenging area with complex 3D bathymetry,
several reefs and heavy shipping. During the experiment, we transmitted more than 40000 frames of
data and collected statistics on communication performance across various links in the network. These
performance statistics are embedded in the Mission2013a channel model in UnetStack. We use a
simulated version of the MISSION 2013 network to learn how to set up and operate larger networks that
require routing.

Figure 5. MISSION 2013 network

To start the simulated network, we simply run the mission2013-network.groovy simulation script:

$ bin/unet samples/mission2013-network.groovy

MISSION 2013 network

Node 21: tcp://localhost:1121, http://localhost:8021/
Node 22: tcp://localhost:1122, http://localhost:8022/
Node 27: tcp://localhost:1127, http://localhost:8027/
Node 28: tcp://localhost:1128, http://localhost:8028/
Node 29: tcp://localhost:1129, http://localhost:8029/
Node 31: tcp://localhost:1131, http://localhost:8031/
Node 34: tcp://localhost:1134, http://localhost:8034/

While the MISSION 2013 network is not physically very large (only about 1.5 km across), the challenging

33

environment kept the network from being fully connected, i.e., not all nodes could directly communicate
with all others. The average frame delivery ratio (number of successfully delivered frames / number of
transmitted frames) on each link is shown in Table 2. The link quality is also shown on the map in Figure
5, with dark blue links being the good ones, dark green ones being the weak ones, and brownish one
being the very poor link.

Table 2. Average frame delivery ratio for MISSION 2013 network

To:
From:

21 22 27 28 29 31 34

21 - 0.926 0.266 0.917 0.912 0.000 0.552

22 0.867 - 0.471 0.751 0.850 0.000 0.288

27 0.359 0.381 - 0.313 0.322 0.000 0.000

28 0.847 0.869 0.390 - 0.845 0.925 0.863

29 0.539 0.693 0.333 0.688 - 0.374 0.000

31 0.000 0.000 0.000 0.902 0.805 - 0.795

34 0.236 0.436 0.000 0.684 0.000 0.544 -

6.2. Connectivity without routing
During the MISSION 2013 experiment, node 21 was a gateway node with surface expression and
connectivity to the Internet (via a 3G cellular network). All other nodes were on the seabed and not
directly accessible. So let us start by exploring the connectivity from node 21 to other nodes:

34

Node 21

> ping 22
PING 22
Response from 22: seq=0 rthops=2 time=2892 ms
Response from 22: seq=1 rthops=2 time=2912 ms
Response from 22: seq=2 rthops=2 time=3143 ms
3 packets transmitted, 3 packets received, 0% packet loss
> ping 27
PING 27
Request timeout for seq 0
Request timeout for seq 1
Response from 27: seq=2 rthops=2 time=11075 ms
3 packets transmitted, 1 packets received, 67% packet loss
> ping 28
PING 28
Response from 28: seq=0 rthops=2 time=2952 ms
Response from 28: seq=1 rthops=2 time=3110 ms
Response from 28: seq=2 rthops=2 time=3031 ms
3 packets transmitted, 3 packets received, 0% packet loss
> ping 29
PING 29
Response from 29: seq=0 rthops=2 time=3355 ms
Response from 29: seq=1 rthops=2 time=18720 ms
Request timeout for seq 2
3 packets transmitted, 2 packets received, 33% packet loss
> ping 31
PING 31
Request timeout for seq 0
Request timeout for seq 1
Request timeout for seq 2
3 packets transmitted, 0 packets received, 100% packet loss
> ping 34
PING 34
Request timeout for seq 0
Response from 34: seq=1 rthops=2 time=3294 ms
Response from 34: seq=2 rthops=2 time=3434 ms
3 packets transmitted, 2 packets received, 33% packet loss

We see that the connectivity to nodes 22 and 28 is good, that to nodes 27, 29 and 34 is poorer, and to node
31 is non-existent. Since the simulation is probabilistic, your exact results may differ.

6.3. Static routing
From Figure 5 and Table 2, we see that node 28 has good connectivity to nodes 31 and 34, so perhaps we
could relay datagrams via node 28. Although the link between 22 and 27 seems to be better than the rest,
the connectivity to that node is generally poor. Let us set up the following routes:

• Relay data between nodes 21 and 31 via node 28

• Relay data between nodes 21 and 34 via node 28

On node 21, we add routes to nodes 31 and 34:

35

Node 21

> addroute 31, 28
OK
> addroute 34, 28
OK
> routes
 uuid to nextHop link reliability hops metric enabled

 riddcc 31 28 uwlink true 0 0.0 true
 fkxbqm 34 28 uwlink true 0 0.0 true

On nodes 31 and 34, we add routes to node 21 via node 28, and enable remote access:

Node 31

> addroute 21, 28
OK
> routes
 uuid to nextHop link reliability hops metric enabled

 b7m7w9 21 28 uwlink true 0 0.0 true
> remote.enable = true
true

Node 34

> addroute 21, 28
OK
> routes
 uuid to nextHop link reliability hops metric enabled

 s6pjtb 21 28 uwlink true 0 0.0 true
> remote.enable = true
true

Now, we can check out connectivity from node 21 to nodes 31 and 34 again:

Node 21

> ping 31
PING 31
Response from 31: seq=0 rthops=4 time=18930 ms
Response from 31: seq=1 rthops=4 time=10680 ms
Response from 31: seq=2 rthops=4 time=46139 ms
3 packets transmitted, 3 packets received, 0% packet loss
> ping 34
PING 34
Response from 34: seq=0 rthops=4 time=26760 ms
Response from 34: seq=1 rthops=4 time=34408 ms
Response from 34: seq=2 rthops=4 time=21660 ms
3 packets transmitted, 3 packets received, 0% packet loss

Much better!

The pings to nodes 31 and 34 show rthops (round trip hops) to be 4, which makes sense, since we have 2-
hop routes in each direction. We can ask the routing agent for a trace to check what route the datagram
took:

36

Node 21

> trace 31
[21, 28, 31, 28, 21]

This shows that the datagram originated at node 21, passed through node 28 before reaching node 31.
Then on the way back, it passed through node 28 again, and reached us back at node 21.

Let us next try to do something using the routes we created. We can get node 21 to ask node 31 to
measure the range to node 34 and report it to us. This request will be relayed via node 28, since our
routing tables are set up to do so. Remember to set remote.enable = true on node 31 before making the
request from node 21:

Node 21

> rsh 31, '?range 34'
AGREE
[31]: 873.67

As you can see from Table 2, the connectivity between nodes 31 and 34 is poor in this simulated
network. You may need to try this command several times before you get a range estimate. When the
ranging fails, you should see the message "ERROR: No response from remote node" back from node 31,
which by itself demonstrates successful routing.


If you don’t have the patience to try a few times for range from node 31 to node 34, try
getting a range from node 31 to 28, which will be much quicker: rsh 31, '?range 28'.

6.4. Route discovery
In the previous section, we learned how to set up static routes manually. But what if we are too lazy to
determine the routes manually? Or if we don’t have access to the nodes on the seabed to set up routes?
We can use the route discovery agent to populate the routing tables.

To see how to do this, let us restart our MISSION 2013 simulation so that the routing tables are empty
(alternatively we can remove the routes we created earlier by typing delroutes on nodes 21, 31 and 34).
We can verify that the routing table is indeed empty:

Node 21

> routes
No routes available

Now, start a route discovery to node 31:

Node 21

> rreq 31
OK

Patiently wait for a minute or two before checking the routing table on node 21:

37

Node 21

> routes
 uuid to nextHop link reliability hops metric enabled

 69gnxp 22 22 uwlink true 1 0.0 true
 ib3goj 28 28 uwlink true 1 0.0 true
 68ozs5 29 29 uwlink true 1 0.0 true
 gkfin2 31 29 uwlink true 2 -1.0 true

Your routing table may differ, as the route discovery process is probabilistic. We see that we now have a
route to node 31 via node 29. Let us check the routing table on node 31 as well, to see if it has a
corresponding entry for a route to node 21:

Node 31

> routes
 uuid to nextHop link reliability hops metric enabled

 1hveg6 28 28 uwlink true 1 0.0 true
 pjfhin 21 28 uwlink true 3 -1.0 true
 n5eqll 34 34 uwlink true 1 0.0 true
 8jlzj3 21 34 uwlink true 3 -2.0 true
 f6dit 29 29 uwlink true 1 0.0 true
 qqtwvd 21 29 uwlink true 3 -2.0 true

Indeed it does! In fact, it has 3 routes back to node 21, one via node 29, and two more via nodes 28 and
34. Of these routes, the route via node 28 has the largest metric, and so will be the route that is used. We
can verify that by issuing a trace from node 21:

Node 21

> trace 31
[21, 29, 31, 28, 21]



Since the route discovery process is probabilistic, it may be useful to repeat the route
discovery if good routes are not established after a single try. The rreq command can
also be called with parameters to control the repetition. For example rreq 31, 3, 6, 30
will initiate 6 route discoveries to node 31 looking for up to 3-hop routes spaced by 30
seconds between discoveries.

38

Chapter 7. Wired and over-the-air links
The networks we explored in the last few chapters were completely underwater. All links were
underwater acoustic links. If we wanted to replace some of the acoustic links with underwater optical or
RF links, or even through-the-air cellular, WiFi or RF links, that could easily be done, as long as you had
a modem driver (a specific type of agent) that supported the device that provided the link. Cellular, WiFi
and other devices often already have TCP/IP network stacks running on them, to provide seamless
connectivity to the Internet. UnetStack can leverage the existing network stack in these devices without
having to develop new modem drivers, by translating Unet datagrams to UDP/IP datagrams, tunneling
them through the IP network, and translating them back to Unet datagrams at the other end.

7.1. The UdpLink agent
The UdpLink agent offers the LINK service (Chapter 21) over an IP network.

To see how this works, let us revisit the MISSION 2013 network from Figure 5. Recall that node 21 was a
gateway node with surface expression, and was connected to the Internet via a 3G cellular IP
connection. During the experiment, we had no direct acoustic connectivity between nodes 21 and 31,
and hence we routed all communication to node 31 via node 28.

Let us consider a scenario where node 31 also has a surface expression and 3G cellular IP connectivity.
In this case, it would be nice to have a direct link from node 21 to node 31 via UDP/IP. Let’s see how to set
that up.

Fire up the mission2013-network.groovy network simulation (or if you already have it running from the
last chapter, terminate and restart it, so that we have no routes in our routing tables). Connect to node
21’s shell and add the UdpLink agent, and setup a route to node 31 via the UDP link:

39

Node 21:

> container.add 'udplink', new UdpLink();
> udplink
« UDP/IP Link »

Link protocol over UDP/IP for use over wired/wireless IP networks.

[org.arl.unet.DatagramParam]
 MTU ⇒ 65535
 RTU ⇒ 1450

[org.arl.unet.link.LinkParam]
 dataRate = 0.0

[org.arl.unet.link.UdpLinkParam]
 advertise = 30
 broadcastAddress = 192.168.1.255
 monitorTimeout = 200
 port = 5100
 retries = 2
 timeout = 0.5

> addroute 31, 31, udplink
OK
> routes
 uuid to nextHop link reliability hops metric enabled

 dhlx8t 31 31 udplink true 1 0.0 true

Similarly, connect to node 31’s shell and add the UdpLink agent as well as a route to node 21 via the UDP
link:

Node 31:

> container.add 'udplink', new UdpLink();
> addroute 21, 21, udplink
OK
> routes
 uuid to nextHop link reliability hops metric enabled

 lbouxd 21 21 udplink true 1 0.0 true

Go back to node 21’s shell and see if you can communicate to node 31 via the UDP link:

Node 21:

> ping 31
PING 31
Response from 31: seq=0 rthops=2 time=27 ms
Response from 31: seq=1 rthops=2 time=5 ms
Response from 31: seq=2 rthops=2 time=4 ms
3 packets transmitted, 3 packets received, 0% packet loss

> ack on
> tell 31, 'hello'
AGREE
remote >> RemoteSuccessNtf:INFORM[RemoteTextReq:REQUEST[to:31 text:hello ack:true]]

40

and on node 31, you’ll see:

Node 31:

[21]: hello

You’ll also notice that the communication is much faster, since the UDP/IP latency is low and data rate is
much higher.

7.2. Multilink routing
When we added the UdpLink agent in the last section, we set up static routes manually on both nodes.
Let’s delete these routes on both nodes:

Node 21, 31:

> delroutes

Now, let’s see what the route discovery agent does when we ask it to discover routes for us:

Node 21

> rreq 31
OK
> routes ①
 uuid to nextHop link reliability hops metric enabled

 w7iayp 31 31 udplink true 1 0.0 true

> routes ②
 uuid to nextHop link reliability hops metric enabled

 w7iayp 31 31 udplink true 1 0.0 true
 6gji1z 22 22 uwlink true 1 0.0 true
 8zhn5v 28 28 uwlink true 1 0.0 true
 mjhfaw 31 28 uwlink true 2 -1.0 true
 fj4g2j 34 34 uwlink true 1 0.0 true
 2r1ymj 28 22 uwlink true 2 -1.0 true
 ii73zj 31 22 uwlink true 3 -2.0 true

> trace 31 ③
[21, 31, 21]

① Checking routes within a few seconds after the rreq, we see that the route via the udplink is
discovered very quickly.

② After a few minutes, we see that additional acoustic routes are also discovered (your routes may vary,
as the route discovery is a probabilistic process).

③ The route used for data transfer is the single-hop udplink route to node 31 and back.

Note that the route discovery resulted in 3 routes to node 31 in this case. The first one is a single-hop
UDP (udplink) route. The second one is an acoustic route (using uwlink) via node 28, and the third one is a
3-hop acoustic route via node 22. We can see that the metric for the 2-hop and 3-hop acoustic routes is
lower than that of the UDP route, and so the UDP route is used for data transfer. The metric is computed

41

based on a combination of number of hops and the packet loss on a route.

You can check the routing table on node 31:

Node 31

> routes
 uuid to nextHop link reliability hops metric enabled

 v5lej 21 21 udplink true 1 0.0 true
 uxl8yr 28 28 uwlink true 1 0.0 true
 bvsu21 21 28 uwlink true 2 -1.0 true
 9q9x91 34 34 uwlink true 1 0.0 true
 vvzke2 21 34 uwlink true 3 -2.0 true

We see 3 routes (direct/udplink, via node 28/uwlink and via node 34/uwlink), and the route with the
largest metric is still the udplink direct route.

42

Part III: Building Unet applications

43

Chapter 8. Interfacing with UnetStack
You now know how to set up a Unet. Let us next explore how you can go about interfacing your
application with UnetStack to take advantage of the Unet. There are several options available:

• The UnetSocket API (Chapter 9) is the most convenient way of interface most modern applications
with UnetStack. API bindings are available for many languages, including Java, Groovy, Python, Julia,
Javascript and C. The API allows you to send and receive user data over the Unet, get and set agent
parameters, and access advanced functionality by interacting with agents using messages.

• UDP portals (Section 10.1) provide a way to establish tunnels through the Unet for UDP datagrams.
This facility can be used to transparently run applications that use UDP, over the Unet.

• TCP portals (Section 10.3) and serial portals (Section 10.4) provide a way to establish connection-
oriented tunnels through the Unet. This is a simple way to run applications that communicate over a
TCP/IP or serial port links, over the Unet.

• Many traditional modems provide an AT command set for applications to interact with them. While
we do not encourage the use of AT commands (as they are error-prone and limited in functionality),
it would be amiss not to mention that UnetStack also supports an AT script engine (Chapter 12) that
may be used by legacy applications to interact with it using AT commands.

44

Chapter 9. UnetSocket API
The command shell is great for manual configuration and interaction, but often we require
programmatic interaction from an external application. For this, we have the UnetSocket API (available
in Java, Groovy, Python, Julia and C). While the exact syntax differs across languages, the basic concepts
remain the same. We focus on the use of the API in Groovy in this section, but also show some examples
in other languages.

9.1. Connecting to UnetStack
If you recall from Section 2.4, you opened a socket connection to UnetStack on the command shell with:

> s = new UnetSocket(this);

Since the command shell was running on the node you wanted to connect to, the meaning of this was
clear. However, in general, you’ll probably be running your application in a different process, or even
on a different computer. You’ll therefore need to provide details on how to connect to the node when
opening a socket.


The examples in this chapter assume that you are running:
bin/unet samples/2-node-network.groovy

For example, to connect to UnetStack from an application over TCP/IP, we need to know the IP address
and port of the API connector on UnetStack. Simply type iface on the command shell of node A to find
this information:

> iface
tcp://192.168.1.9:1101 [API]
ws://192.168.1.9:8081/ws [API]
websh: ws://192.168.1.9:8081/fjage/shell/ws [GroovyScriptEngine]

The first entry starting with tcp:// is the API connector available over TCP/IP. The IP address and port
number in this case are 192.168.1.9 and 1101 respectively. The IP address on your setup might differ, so
remember to replace it in the example code below when you try it.

To connect to UnetStack from a Groovy application, typical code might look something like this:

import org.arl.unet.api.UnetSocket

def sock = new UnetSocket('192.168.1.9', 1101) ①
// do things with sock here
sock.close()

① Note that the def is typically not used in the shell, as we usually want the sock variable to be created
in the shell’s context. However, we use def in Groovy scripts or closures to keep the sock variable in
the local context.

45


External applications interact with UnetStack via a UnetSocket API using fjåge’s
connector framework. This allows the API to access UnetStack over a TCP/IP
connection, a serial port, or any other fjåge connector that may be available.

The code in other languages looks similar. For example, in Python:

from unetpy import UnetSocket

sock = UnetSocket('192.168.1.9', 1102)
do things with sock here
sock.close()

A simple example application in Python using the UnetSocket API was illustrated previously in Section
2.5.

9.2. Sending data
To send datagrams using a socket, we first specify the destination address and protocol number using
the connect() method, and then use the send() method to send data (byte array). In Groovy:

def to = sock.host('B') ①
sock.connect(to, 0) ②
sock.send('hello!' as byte[]) ③
sock.send('more data!' as byte[])

① Resolve node name to address. If the destination address is already known, this step can be skipped.

② Connect using protcol 0 (generic data). Constant org.arl.unet.Protocol.DATA may be used instead of 0
for improved readability.

③ Data has to be converted into a byte[] for transmission using the send() method.

If only a single send() is desired, the connect() call may be omitted and the destination and protocol
number can be provided as parameters to send():

sock.send('hello!' as byte[], to, 0)

9.3. Receiving data
On the receiving end, we specify the protocol number to listen to using bind(), and then receive a
datagram using the receive() method:

sock.bind(0)
def rx = sock.receive()
println(rx.from, rx.to, rx.data)


Unbound sockets listen to all unreserved protocols. So the bind() call above could be
skipped, if we would like to listen to all application datagrams.

46

The receive() method above is blocking by default. The blocking behavior can be controlled using the
setTimeout() method, where the blocking timeout can be specified in milliseconds. A timeout of 0 makes
the call non-blocking. If no message is available at timeout, a null value is returned. When the receive()
call is blocked, a call to cancel() can unblock and cause the receive() call to return immediately.

9.4. Getting & setting parameters
You have already been introduced to agent parameters in Chapter 3. Applications can obtain
information about an agent by reading its parameters, and can control the behavior of the agent by
modifying its parameters.

To access agent parameters, you first have to look up the relevant agent based on its name or a service
that it provides. For example:

def phy = sock.agentForService(org.arl.unet.Services.PHYSICAL) ①
println(phy.MTU)
println(phy[1].dataRate)

① Looking up an agent based on a services it provides is recommended, rather than specify the agent by
name. We will explore services in more detail in Chapter 13. However, if you wished to reference an
agent by name, you could have done that as: def phy = sock.agent('phy')

This will print the value of parameter MTU (maximum transfer unit) of the physical layer, and the
physical layer dataRate of the CONTROL (1) channel. You could also change some of the parameters:

println(phy[2].frameLength)
phy[2].frameLength = 32
println(phy[2].frameLength)
phy[2].frameLength = 64


Developers may wish to consider using constants org.arl.unet.phy.Physical.CONTROL
and org.arl.unet.phy.Physical.DATA instead of hard coding 1 and 2, for readability.



The phy object that you received back from sock.agentForService() or sock.agent() is
an AgentID. You can think of this as a reference to the agent. Setting and getting
parameters on the agent ID sends ParameterReq messsages to the agent to read/modify
the relevant parameters. You can also use agent IDs to send messages to the agent
explicitly, as you will see next.

9.5. Accessing agent services
As we have already seen in Section 3.2, the full functionality of UnetStack can be harnessed by
sending/receiving messages to/from various agents in the stack. We earlier saw how to do that from the
shell. We now look at how to use the UnetSocket API to send/receive messages to/from agents.

To request broadcast of a CONTROL frame, like we did before from the shell, we need to lookup the
agent providing the PHYSICAL service and send a TxFrameReq to it:

47

import org.arl.unet.phy.TxFrameReq

def phy = sock.agentForService(org.arl.unet.Services.PHYSICAL)
phy << new TxFrameReq()

For lower level transactions, we obtain a fjåge Gateway instance from the UnetSocket API, and use it
directly. For example, we can subscribe to event notifications from the physical layer and print them:

def gw = sock.gateway
gw.subscribe(phy)
def msg = gw.receive(10000) ①
if (msg) println(msg)

① Receive a message from the gateway with a timeout of 10000 ms. If no message is received during this
period, null is returned.

9.6. Python and other languages
In Groovy and Java, services, parameters and messages are defined using enums and classes. These are
made available to the client application by putting the relevant jars in the classpath. In other languages
(e.g. Python, Julia, Javascript), services and parameters are simply referred to as strings with fully
qualified names (e.g. 'org.arl.unet.Services.PHYSICAL'). Messages are represented by dictionaries, but
have to be declared before use.

For example, in Python:

from unetpy import *

sock = UnetSocket('192.168.1.9', 1102)
phy = sock.agentForService(Services.PHYSICAL)
phy << TxFrameReq()
sock.close()


If you recall from Section 2.5, from is a keyword in Python and so the from field in
messages is replaced by from_. Other than this minor change, the fields in all the
Python message classes are the same as the Java/Groovy versions.

48

Chapter 10. Portals
Although the UnetSocket API provides great flexibility, it requires an application to explicity use the API
to integrate with UnetStack. Sometimes you might have devices or applications that talk to each other
over a serial cable or a UDP/IP or TCP/IP connection, and you simply want to replace the cable or
connection with an underwater wireless connection. Is there an easier way for such simple Internet or
serial port applications to communicate over a Unet?

The answer lies in portals. A portal is a transparent connection across the Unet. Data going in through
one end of the portal travels through the Unet and emerges from the other end. The interaction with the
end points of the portal is via traditional technologies such as UDP/IP sockets, TCP/IP sockets, or serial
ports. This enables applications developed to use these technologies to transparently work over a Unet.

Application examples

Imagine that you have a sensor that connects to a laptop over a RS232 serial cable. You want to
deploy this sensor on the seabed and have its data be available wirelessly over the Internet in real
time. All you want to do is replace that RS232 cable with a wireless Unet connection. A serial
portal could be used for this. Instead of a RS232 serial cable, maybe the sensor published its data
over an Ethernet cable on a TCP/IP port. You’d use a TCP portal instead.

In Section 10.2, we demonstrate a practical example of a video streaming application that runs
over UDP, and can be made to transparently work over a Unet using the UDP portal.



While portals are easy to use, you should bear in mind that applications developed for
the Internet or for use over serial ports do not understand the constraints and
characteristics of a Unet. Some applications may use bandwidth inefficiently, or expect
responses with latencies that are unreasonable for a Unet, and therefore perform
poorly.

10.1. UDP portal
Since UDP is a datagram-oriented protocol, it is easy to map UDP datagrams to Unet datagrams. This is
exactly what a UDP portal does, as shown in Figure 6.

In this example, application X sends a UDP datagram to node A, where a UdpPortal agent listens on UDP
port 7000 (arbitrarily chosen port number). The UdpPortal agent converts the UDP datagram into a Unet
datagram and sends it to node B. The UdpPortal agent on node B receives this datagram, converts is back
to a UDP datagram and sends it to application Y listening on UDP port 7778 (also an arbitrarily chosen
port number).

49

Figure 6. A UDP portal establishes a tunnel through the Unet for UDP datagrams to pass through.

Let us emulate this example with our favorite 2-node network. Fire up the 2-node network simulation,
as before:

$ bin/unet samples/2-node-network.groovy

2-node network

Node A: tcp://localhost:1101, http://localhost:8081/
Node B: tcp://localhost:1102, http://localhost:8082/

Open browser windows for shell access to each of the nodes. On node A, create a UdpPortal listening on
port 7000 (since application X will send UDP datagrams to this port) and sending Unet datagrams
(protocol 0 in this example, but that can be configured using the protocol parameter below) to node B:

> container.add 'portal', new org.arl.unet.portal.UdpPortal(port:7000, peer:host('B'));
> portal
« UDP Portal »

Transparent transport for UDP frames through a network.

[org.arl.unet.portal.UdpPortalParam]
 clientIP = 255.255.255.255
 clientPort = 7778
 dsp = uwlink
 peer = 31
 port = 7000
 priority = NORMAL
 protocol = 0
 reliability = false

The default port and clientPort for the UdpPortal are arbitrarily chosen to be 7777 and 7778
respectively. You can easily change them during creation of the UdpPortal, as we did above, or later, by
setting the relevant parameter.

On node B, create the other end-point of the UDP portal to send the UDP datagrams to localhost UDP

50

port 7778, where you will run application Y:

> container.add 'portal', new org.arl.unet.portal.UdpPortal(clientIP: 'localhost', clientPort: 7778);
> portal
« UDP Portal »

Transparent transport for UDP frames through a network.

[org.arl.unet.portal.UdpPortalParam]
 clientIP = localhost
 clientPort = 7778
 dsp = uwlink
 peer = 0
 port = 7777
 priority = NORMAL
 protocol = 0
 reliability = false

That’s it, your UDP portal is set up! Time to test it out!!


To test the UDP portal (and later, the TCP portal), we will use netcat or nc. If you don’t
have this installed on your machine, now would be a good time to go download and
install it.

Open a terminal window on your machine and set up a simple UDP server listening on port 7778
(application Y):

$ nc -u -l 7778

Open another terminal window and set up a simple UDP client to send text datagrams to port 7000
(application X). Assuming your IP address is 192.168.1.9, you can do this using the command shown
below. Type a text message and press ENTER.

$ nc -u 192.168.1.9 7000
hello ①

① Type your text message "hello" followed by ENTER.

In a few seconds, you should see that text message appearing on application Y terminal:

$ nc -u -l 7778 ①
hello ②

① You had already typed this in earlier.

② Your text message "hello" appears here.

The text message went through the Unet to get there!

51


You may need to use the IP address of your machine (e.g. 192.168.1.9) for the UDP
connection to send the text message, rather than localhost. This is because the
UdpPortal binds to the default network interface, and not to the loopback network
interface.

10.2. Video streaming using UDP portal
You can do some cool things once you have set up the UDP portal. Here’s one real-life example:

Say, you wanted to stream video through the Unet. If you have ffmpeg installed, you can set up a UDP
video client listening on port 7778:

$ ffplay udp://192.168.1.9:7778

and you can stream a video (movie.m4v) over UDP to port 7000:

$ ffmpeg -re -i movie.m4v -an -s cif -r 6 -c:v libx264 -b:v 15k -f mpegts udp://192.168.1.7:7000?pkt_size
=512

The various flags control the quality, frame rate, and encoding of the video, and the pkt_size option
controls the size of the datagrams sent.



The ffmpeg flags need to be adjusted to suit your Unet (read the ffmpeg

documentation!). You need to ensure that the links in the Unet can support the data
rates needed for this video, based on the flags you select. We have demonstrated real-
time video with a high-speed acoustic underwater link with data rates of about 40
kbps.

10.3. TCP portal
A TCP portal is set up using the Portal agent. The Portal agent is quite similar to the UdpPortal agent, but
provides more flexibility through the fjåge connectors framework. We can use a TCP connector for our
TCP portal.

Restart your 2-node network, and on node A set up a TCP portal listening on port 7000:

52

> container.add 'portal', new org.arl.unet.portal.Portal(7000);
> portal
« Portal »

Transparent transport for TCP/IP or serial connections through a network.

[org.arl.unet.portal.PortalParam]
 delimiters = [10, 13]
 dsp = uwlink
 peer = 0
 priority = NORMAL
 protocol = 0
 reliability = false
 timeout = 1000

On node B, create the other end-point of the TCP portal listening on port 7001:

> container.add 'portal', new org.arl.unet.portal.Portal(7001);

That’s it, your TCP portal is set up! Time to test it out!!

Open a terminal window on your machine and connect over TCP/IP to node A:

$ nc localhost 7000

Open another terminal window and connect over TCP/IP to node B. Type a text message and press
ENTER.

$ nc localhost 7001
hello ①

① Type in your text message "hello", and press ENTER.

In a few seconds, you should see that text message appearing on the TCP/IP connection to node A:

$ nc localhost 7000 ①
hello ②

① You had already typed this in above.

② Your text message "hello" appears here.

The text message went through the Unet to get there!


The TCP portal is bidirectional, so you can type something on node A, and you should
see it appear on node B. The UDP portal in Section 10.1 can also be set up as
bidirectional by carefully configuring the peer, port, and clientPort parameters at both
end-points.

53

10.4. Serial portal
Since the Portal agent uses the fjåge connectors framework, it can easily work with any type of
connector. Since fjåge provides a serial port connecor, we can easily set up a serial portal on each of
your nodes:

> container.add 'portal', new org.arl.unet.portal.Portal('/dev/ttyS0', 9600, 'N81');



Since many modern computers do not have serial ports, you may not be able to test the
above code on your computer. If you have underwater modems with serial ports,
you’ll need to replace the device name (/dev/ttyS0) with the appropriate serial port
device name to run this code. You can also customize the serial port baud rate (9600)
and settings (N81).

Once you have the serial portal set up on all nodes, you can connect to the node’s serial port using a
serial terminal application (e.g. minicom) and type text messages just like you did with nc during the TCP
portal test.

54

Chapter 11. Wormholes
Portals (Chapter 10) provide a way to transparently tunnel data through a Unet. Wormholes, on the
other hand, provide a way to easily communicate between agents in different Unet nodes.

The fjåge agent framework forms the inter-agent communication backbone of a Unet node. All agents in
one Unet node live in one fjåge universe, and can seamlessly communicate with each other. However,
agents in different nodes live in different fjåge universes, and typically only communicate with peer
agents on other nodes using protocols implemented over Unet links. Wormholes connect multiple fjåge
universes over Unet links, allowing all agents in multiple nodes to transparently talk to each other!

Figure 7. Wormholes transparently connect agents across Unet nodes.

Why would we want to do this? The usefulness of this is best understood through an application that we
explore next.

11.1. Diver tracking application
Imagine a network with gateway node A (a standalone buoy), surface node B (deployed from a boat),
and an underwater node C (diver). Nodes A and B have underwater acoustic modems and in-air WiFi
connectivity. Node C is fully submerged, and only has acoustic connectivity to nodes A and B. An diver
tracking script on node B wishes to track the location of diver node C. This requires the script on node B
to make range measurements btween node B and node C (easy to do!), but also between node A and
node C (not so easy!). The traditional approach to this problem would be to deploy a helper agent on
node A to make the range measurement, and have the script communicate with the agent using a

55

custom protocol over a UDP link over WiFi. Another approach would be to enable remote access
(Chapter 24) on node A, and use rsh to execute the ranging commands on node A, and send back the
results using tell. While this would work, it would be quite fragile. Wormholes provide a much simpler
and robust way to do this.

We’ll use the Netiquette 3-node network to demonstrate how to do this:

$ bin/unet samples/netq-network.groovy

Netiquette 3-node network

Node A: tcp://localhost:1101, http://localhost:8081/
Node B: tcp://localhost:1102, http://localhost:8082/
Node C: tcp://localhost:1103, http://localhost:8083/

Nodes A and B are assumed to be connected over an in-air WiFi network, and so we can enable UdpLink
on both nodes and establish connectivity over it:

Node A:

> container.add 'udplink', new UdpLink();
> addroute host('B'), host('B'), udplink
OK

Node B:

> container.add 'udplink', new UdpLink();
> addroute host('A'), host('A'), udplink
OK
> ping host('A')
PING 232
Response from 232: seq=0 rthops=2 time=3 ms
Response from 232: seq=1 rthops=2 time=4 ms
Response from 232: seq=2 rthops=2 time=3 ms
3 packets transmitted, 3 packets received, 0% packet loss

Next, we enable the Wormhole agent on both nodes, and set it up to use the udplink for connectivity:

Nodes A and B:

> container.add 'wh', new org.arl.unet.wormhole.Wormhole();
> wh.dsp = udplink;
> wh
« Wormhole »

[org.arl.unet.wormhole.WormholeParam]
 compression = true
 dsp = udplink
 publish = []
 publishTo = 0

That’s it for the setup! We’re now ready to prototype out our application over the wormhole.

The functionality we needed was to make range measurements between nodes B and C, and nodes A and

56

C, from a script on node B. Let’s start off measuring range to node C from node B and call it r1:

Node B:

> ranging << new RangeReq(to: host('C'))
AGREE
ranging >> RangeNtf:INFORM[from:31 to:74 range:616.0877 offset:-1751533450 rxTime:4096892937]
> r1 = ntf.range
616.0877

In a script, you’d probably want to use ntf = receive(RangeNtf, 5000) to access the RangeNtf that comes
back, but we’ll stick to doing this just in the shell for the demonstration. Now comes the magic. From the
shell on node B, we want to ask the ranging agent on node A (address 232) to make a range
measurement to node C for us:

Node B:

> agent('ranging@232') << new RangeReq(to: host('C'))
AGREE
ranging@232 >> RangeNtf:INFORM[from:232 to:74 range:530.0323 offset:636287273 rxTime:1806486132]
> r2 = ntf.range
530.0323


We are able to communicate with agents on other nodes connected through the
wormhole by simply adding a suffix @999 where 999 is the node address. So ranging@232
refers to the agent ranging on node with address 232.

Now that we have r1 and r2, we can use it to compute the location of the diver in our script.

11.2. Publishing and subscribing over wormholes
In the diver tracking application above, we performed two-way travel-time (TWTT) ranging from nodes
A and B to node C. While this works well, each diver location measurement required transmission of 4
frames. With one-way travel-time (OWTT) ranging (see Chapter 17), we could make each measurement
in just one transmission from diver node C, as long as we had accurate clocks at all nodes.

First, let us enable OWTT ranging by synchronizing clocks between nodes A and C, and nodes B and C
(see Section 17.3.2 for details):

Node A:

> ranging[host('C')].lifetime = 3600
3600
> range host('C')
530.0323
> ranging[host('C')].sync // verify that the sync was achieved
true
> subscribe ranging

57

Node B:

> ranging[host('C')].lifetime = 3600
3600
> range host('C')
616.0877
> ranging[host('C')].sync // verify that the sync was achieved
true
> subscribe ranging

OWTT is now enabled. To send out a beacon on node C, we use the beacon command (or equivalently
send a BeaconReq message):

Node C:

> beacon
AGREE

On nodes A and B, you’ll see the RangeNtf notifications:

Node A:

ranging >> RangeNtf:INFORM[from:232 to:74 range:530.0323 rxTime:3059430132]

Node B:

ranging >> RangeNtf:INFORM[from:31 to:74 range:616.0877 rxTime:5447306937]

Diver node C can now send out a beacon transmission regularly, and ranging agents on node A and node
B will publish RangeNtf notifications on their respective agent topics. On node B, we would then want to
subscribe to the ranging agent topics on both nodes. We are already subscribed to node B’s ranging
agent, and connected over the wormhole (established in the previous section) to node A. Since we can
refer to the ranging agent on node A as agent('ranging@232'), we should be able to subscribe to it:

Node B:

> subscribe agent('ranging@232')

Now, try sending a beacon again from node C, and see what we get at node B:

Node B:

ranging >> RangeNtf:INFORM[from:31 to:74 range:616.0877 rxTime:6152654937]

We got the notification from node B’s agent, but nothing from node A!

By default, wormholes do not publish messages on topics. However, it is easy to enable certain topics to
be published. To enable this, we set the wh.publish parameter on node A:

58

Node A:

> wh.publish = [topic(ranging)]
[ranging__ntf]


We can restrict the publication of the topic to only certain peer nodes, if we wish, by
setting the wh.publishTo parameter to the address of the target node. By default, it is set
to 0 (broadcast).

Now, try sending a beacon again from node C, and see what we get at node B:

Node B:

ranging@232 >> RangeNtf:INFORM[from:232 to:74 range:530.0323 rxTime:4129955132]
ranging >> RangeNtf:INFORM[from:31 to:74 range:616.0877 rxTime:6517831937]

Cool! We got both ranges on node B now.

We can now write our application script to call receive(RangeNtf) to get the ranges, and computes the
position of the diver everytime the diver node transmits a beacon.

59

Chapter 12. AT script engine



The UnetSocket API (Chapter 9) is the recommended way to integrate applications with
UnetStack. The AT script engine is only provided for legacy system support, and its use
should be avoided in modern systems, as they suffer from several drawbacks
(serialized interaction, error prone parsing, limited flexibility, lack of scripting support,
etc.)

The AT command interpreter provides support for legacy applications that prefer to interact with
UnetStack using AT text commands. All AT commands begin on a fresh line with an AT prefix, and end
with a new line (CR or LF). Spaces and other whitespace characters are considered significant. Lines
without the AT command prefix are silently ignored and may be used as a comment in AT command files.
All AT commands are case-insensitive, with the exception of Java class names and parameter names in
the AT~EXT and AT~MSG commands.

A successful response to an AT command may span several lines of text followed by an OK to mark the
end of the response. If the AT command is unsuccessful, an ERROR response is returned. The OK or ERROR
response is also terminated by a new line (CR or LF).

Unsolicited notifications may be sent by the AT command interpreter to the user. Responses and
notifications are atomic, and lines from each may not be interleaved in the other.

We describe the AT command set through examples below. The convention used in describing
commands is that the command is in uppercase. Lowercase words denote parameters in the command,
to be replaced by the user with appropriate values. Optional parts of the command are denoted by […].

12.1. Starting the AT command interpreter
The AT command interpreter is available as a script engine that can be loaded using a shell agent:

> iface ATScriptEngine, 5001

Once started, you can connect to port 5001 (assuming you started the interpreter on TCP port 5001 as
shown above) using a terminal window:

$ nc localhost 5001

Now you can interact with the AT command interpreter.


You can also bind the AT command interpreter to a serial port, if desired. See help
iface for details.

12.2. Basic AT commands
A small set of basic AT commands are honored by the interpreter:

• AT — check if a command link is active:

60

AT
OK

• ATE0/ATE1 — turn off/on echo:

ATE1
OK
AT
AT
OK
ATE0
ATE0
OK
AT
OK

• ATZ — shutdown/reboot

• AT/ — repeat last AT command

12.3. Shell extensions
The interpreter can be customized using shell extensions:

• AT~EXT=classname — load shell extension

Fields and methods exposed by a shell extension are made available in a shell using this command.
Example:

AT~PLVL
ERROR
AT~EXT=org.arl.unet.phy.PhysicalShellExt
OK
AT~PLVL
PHY/1.POWERLEVEL=-42.0
PHY/2.POWERLEVEL=-42.0
PHY/3.POWERLEVEL=-42.0
PHY/4.POWERLEVEL=-42.0
PHY.SIGNALPOWERLEVEL=-42.0
OK
AT~PLVL=-3
OK
AT~PLVL
PHY/1.POWERLEVEL=-3.0
PHY/2.POWERLEVEL=-3.0
PHY/3.POWERLEVEL=-3.0
PHY/4.POWERLEVEL=-3.0
PHY.SIGNALPOWERLEVEL=-3.0
OK

The parameters to methods are specified as a comma-separated list after the = symbol in the command
(e.g. -3 in AT~PLVL=-3). The parameters may be numeric (int, long, float or double), boolean represented
by 0 or 1 as false and true respectively, or double-quoted strings (e.g. "this is a string").

61

12.4. Agent parameter access commands
Agent parameters may be listed, read and written to:

• AT~agent[/index]? — list parameters:

AT~PHY?
PHY.SIGNALPOWERLEVEL=-10.0
PHY.RXENABLE=1
PHY.MAXPOWERLEVEL=0.0
PHY.MINPOWERLEVEL=-138.0
PHY.NOISE=-71.9
PHY.MTU=13
PHY.FULLDUPLEX=1
PHY.BUSY=0
PHY.RTC="Tue Jul 23 02:19:39 SGT 2019"
OK
AT~PHY/1?
PHY/1.FRAMELENGTH=18
PHY/1.FEC=3
PHY/1.MTU=13
PHY/1.DATARATE=52.554745
PHY/1.FRAMEDURATION=2.74
PHY/1.MODULATION="fhbfsk"
PHY/1.POWERLEVEL=-10.0
PHY/1.VALID=1
PHY/1.THRESHOLD=0.25
OK

• AT~agent[/index].parameter? — get parameter:

AT~PHY/1.FRAMELENGTH?
PHY/1.FRAMELENGTH=18
OK

• AT~agent[/index].parameter=value — set parameter:

AT~PHY/1.FRAMELENGTH=21
OK
AT~PHY/1.FRAMELENGTH?
PHY/1.FRAMELENGTH=21
OK

12.5. Sending and receiving messages
The command interpreter may make requests and receive message notification by defining the messages
of interest and subscribing to appropriate topics:

• AT~MSG:<msg>=<classname>:parameter[,parameter]… — define message format

Message formats defined using this command are available for requests and also used for notifications.
If a message is not defined, notifications of that message type are silently ignored. The following
command defines a message DRQ of class org.arl.unet.DatagramReq with 3 parameters: to, protocol and

62

data in that order:

AT~MSG:DRQ=org.arl.unet.DatagramReq:to,protocol,data
OK

We also define other messages similarly:

AT~MSG:TXNTF=org.arl.unet.phy.TxFrameNtf:type,txTime
OK
AT~MSG:RXNTF=org.arl.unet.phy.RxFrameNtf:from,to,protocol,rxTime,data
OK

• AT~agent<msg=parameter[,parameter]… — make a request

Once we have defined the messages above, we can make a request to PHY to send a datagram to node 2
with protocol 0 and 3 bytes of data: [1,2,3]:

AT~PHY<DRQ=2,0,"010203"
OK

The notification for the datagram transmission completion will be displayed as an unsolicited
notification:

~PHY>TXNTF=2,1994962099

The general notifications format as: ~agent>msg=parameter[,parameter]…. If any of the parameters are
byte[] or float[], they are not included in the parameter list. Instead a colon (:) is added at the end of
the line, and the data in hex follows on subsequent lines. Once the data ends, a period (.) is sent on a
single line. If multiple parameters are arrays, the number of array parameters is given by the number of
colons at the end of the line, and each array is terminated by a period, followed by the next array. An
example is shown below:

~PHY>RXNTF=1,0,0,2095058353:
0102030405060708090A0B0C0D0E0F
1112131415161718191A1B1C1D1E1F
.

• AT~SUB=topic[,subtopic] — subscribe to a topic

Without subscribing to a topic, we see that the user is not notified about the reception of a frame,
although the message type is already defined:

AT~PHY.FULLDUPLEX=1
OK
AT~PHY<DRQ=0,0,"010203"
OK
~PHY>TXNTF=2,2095026099

After subscribing to PHY, the received message is reported:

63

AT~SUB=PHY
OK
AT~PHY<DRQ=0,0,"010203"
OK
~PHY>TXNTF=2,2095026099
~PHY>RXNTF=1,0,0,2095058353:
010203
.

Here we see that the data from the RXNTF is included after the notification message as a data block. This
is the case for all byte[] or float[] parameters. Each data block may span several lines, and is
terminated by a period (.) on a line by itself. The number of data blocks to follow a notification is
denoted by the number of colons (:) at the end of a notification.

• AT~UNSUB=topic[,subtopic] — unsubscribe from a topic:

AT~UNSUB=PHY
OK
AT~PHY<DRQ=0,0,"010203"
OK
~PHY>TXNTF=2,2095026099

12.6. Managing the data buffer
While data may be directly included in a request message, sometimes it is useful to load data into a data
buffer first, and then use it multiple times for requests. This is managed using the following commands:

• AT~DATA: — load data buffer

Data is represented as a series of hexadecimal bytes, and may span many lines. Data entry is terminated
by a period (.) on a line by itself:

AT~DATA:
010203
040506
.
OK

The above representation is convenient for byte[] parameters. However, the same representation is
used for other data arrays, including float[], where the IEEE floating point representation is used for
the floating point number to be converted to a series of bytes.

An alternative data representation is useful for float[], where the floating point numbers are directly
specified:

64

AT~DATA:
1.54
0.78
5.92
2.00
.
OK

For this representation, it is necessary to have a decimal place (.) in each number, and each line to
contain only one floating point number.

• AT~DATA? — check size of data buffer:

AT~DATA:
010203
040506
.
OK
AT~DATA?
6 bytes
OK

• AT~CLRDATA — clear data buffer:

AT~CLRDATA
OK
AT~DATA?
EMPTY
OK

To use the data buffer, we simply use "DATA" instead of the hexadecimal data in a message. For example:

AT~SUB=PHY
OK
AT~DATA:
010203
040506
.
OK
AT~PHY<DRQ=0,0,"DATA"
OK
~PHY>TXNTF=2,3738882099
~PHY>RXNTF=1,0,0,3738925936:
010203040506
.

65

Part IV: Understanding UnetStack
services

66

Chapter 13. Services and capabilities
So far you’ve interacted with agents, checking and changing agent parameters, and sending and
receiving messages. But how do you know which agents to send what messages to, and what agents
support which parameters? The answer to this question lies in the concept of services.

13.1. Terminology
To fully understand services, we need to formally define a few terms, many of which you are already
somewhat familiar with:

Agent

An agent is logical entity that implements a specific functionality of the network. Loosely, an agent
maps to a layer in a traditional network stack, but is more flexible. Each agent has its own thread of
execution, and all agents can be thought of as running concurrently. An agent is normally referenced
using its AgentID. You may think of an AgentID as the name of an agent, or a reference to the agent.

Message

Agents interact with each other via messages. Agents can send and receive messages, and typically
expose all their functionality as a set of messages that they will respond to. Messages are transmitted
within the network stack on a node, and not between nodes in the network. Each message is tagged
with a performative that summarizes the purpose of the message. Common performatives are
REQUEST, AGREE, REFUSE, FAILURE, NOT_UNDERSTOOD and INFORM.



It is easy to confuse messages, datagrams and frames. Messages are used by agents on
a node to interact with other agents on the same node. They are never transmitted!
Datagrams are logical packets of data that are exchanged between nodes. Datagrams
may be fragmented and reassembled, and thus one datagram does not necessarily map
to one transmission. Physical layer datagrams are called frames; they form the basic
unit of data exchanged between nodes.

Request

Request messages ask an agent to perform some task. Such messages are marked with the
performative REQUEST, and it is a convention to name the message class with a suffix Req (e.g.
DatagramReq, ParameterReq).

Response

When an agent receives a request, it must respond back to the requesting agent. Common responses
are simply messages with the performative set to AGREE, REFUSE, FAILURE or NOT_UNDERSTOOD. An AGREE
message confirms to the requester that the agent will perform the requested task. A REFUSE message
tells the requester that the request cannot be performed. A FAILURE message, on the other hand,
means that the agent should have been able to do the request under normal circumstances, but
something went wrong. A NOT_UNDERSTOOD response is generated if the agent does not know how to
deal with the request. Other than these simple messages, responses may sometimes contain more
information. Such messages are respresented by message classes with a suffix Rsp (e.g. ParameterRsp),
and may have a performative of INFORM to indicate that they contain information in response to the
request.

67

Notification

Agents sometimes generate unsolicited information. This information is encapsulated in a
notification message, typically with a performative INFORM. Notification messages may be sent to a
specific agent, or on a topic.

Topic

A topic defines a publish-subscribe mechanism where an agent may publish some notifications, and
other agents interested in those notifications may subscribe to the topic. Most agents have an
unnamed topic associated with themselves, that other agents can subscribe to. For example, a link
agent may subscribe to the topic of a physical layer agent to listen for incoming data frames from the
physical layer.

Parameters

Most UnetStack agents publish a number of parameters associated with them. Parameters are key-
value pairs that provide information about the agent (read-only parameters), or allow controlling the
behavior of the agent (read-write parameters). Parameters are technically accessed via ParameterReq
and ParameterRsp messages, but a simpler notation (agent.parameter) is also available to get/set
parameters.

Service

A service is a collection of messages (requests, responses and notifications) and parameters that an
agent honors. Agents publish the list of services they offer, and you can find agents through the
services they advertise.

Capability

Services often define optional capabilities. These capabilities may be offered by some agents
advertising a service, but may be omitted by others. An agent can be queried to check if it supports a
specific capability using the CapabilityReq message.


If all of these terms pique your curiosity, you may wish to take a look at the fjåge
documentation. fjåge is the underlying agent framework that UnetStack is built on.
While we don’t assume familiarity with fjåge in this handbook, your understanding of
UnetStack would certainly be quicker if you were to invest in building that familiarity.

13.2. Finding service providers
In Section 9.5, we have already come across the agentForService() function that helps us find an agent
that provides a specific service. In this section, we’ll explore this a bit more.

Fire up your trusty 2-node network and connect to node A’s shell:

> a = agentForService(org.arl.unet.Services.PHYSICAL);
> a.name
phy

We asked for an agent that provides the org.arl.unet.Services.PHYSICAL service, and UnetStack
responded back with an agent ID of an agent that can provide you that service. The name of that agent
on node A is phy.

68

https://fjage.readthedocs.io/en/latest/index.html
https://fjage.readthedocs.io/en/latest/index.html

But what if there were more than one agents capable of providing the same service? We can ask for the
list of all agents that provide a service:

> agentsForService(org.arl.unet.Services.PHYSICAL)
[phy]

Well, there was only one agent providing the PHYSICAL service. Are there other services that multiple
agents provide? Indeed, there are:

> agentsForService(org.arl.unet.Services.DATAGRAM)
[transport, router, uwlink, phy]

The DATAGRAM service is provided by several agents. If you were interested in all incoming datagrams,
you’d need to subscribe to the topics of all these agents!

What would have happened if you only asked for agentForService() instead of agentsForService() for the
DATAGRAM service? Try it:

> a = agentForService(org.arl.unet.Services.DATAGRAM);
> a.name
transport

Any one of the agents in the list is returned!



Ever wondered what we assigned the a = agentForService(…), and then asked for
a.name to see the name of the agent?

When you try to print an AgentID object on the shell, the shell tries to be helpful and
queries the agent for all its parameters and displays them. In this case, we were only
interested in the name and not all the parameters, so we asked the shell not to get the
parameters by explicitly asking for just a.name.

You can also ask an agent for the list of services it provides:

> phy.services
[org.arl.unet.Services.PHYSICAL, org.arl.unet.Services.DATAGRAM, org.arl.unet.Services.BASEBAND]

or get a list of all services provided by all agents in the stack:

69

> services
org.arl.unet.Services.NODE_INFO: node
org.arl.unet.Services.PHYSICAL: phy
org.arl.unet.Services.REMOTE: remote
org.arl.unet.Services.TRANSPORT: transport
org.arl.unet.Services.ADDRESS_RESOLUTION: arp
org.arl.unet.Services.MAC: mac
org.arl.unet.Services.RANGING: ranging
org.arl.fjage.shell.Services.SHELL: websh
org.arl.unet.Services.DATAGRAM: transport router uwlink phy
org.arl.unet.Services.BASEBAND: phy
org.arl.unet.Services.LINK: uwlink
org.arl.unet.Services.ROUTING: router
org.arl.unet.Services.STATE_MANAGER: statemanager
org.arl.unet.Services.ROUTE_MAINTENANCE: rdp

13.3. Checking capabilities
So let’s say you looked up the list of agents that provide the DATAGRAM service:

> agentsForService(org.arl.unet.Services.DATAGRAM)
[transport, router, uwlink, phy]

If you wanted to send a datagram, how do you pick which one you’d rather use? Different agents may
provide different optional capabilities. If you were specifically interested in a particular capability (e.g.
reliability), you could ask the agent if it supported that:

> phy << new CapabilityReq(org.arl.unet.DatagramCapability.RELIABILITY)
DISCONFIRM
> uwlink << new CapabilityReq(org.arl.unet.DatagramCapability.RELIABILITY)
CONFIRM

Here, we asked phy if it can do reliable datagram delivery, and it said "no". Then we asked uwlink, and it
confirmed that it can. If you needed reliable delivery of our datagram, you should choose the latter.

You can also ask an agent to list all its optional capabilities:

> transport << new CapabilityReq()
CapabilityListRsp:INFORM[PROGRESS,RELIABILITY,FRAGMENTATION,CANCELLATION]

The transport agent says it can do reliable datagram delivery, fragment & reassemble large datagrams (if
necessary), report on the progress of large datagram transfers, and cancel datagram delivery half way
through the process (if the user wishes to).

Another way you may choose a service provider is by checking its parameters. For example, the MTU
parameter (defined in the DATAGRAM service) tells you what is the largest datagram the agent can
deliver:

70

> phy.MTU
56
> uwlink.MTU
3145632

If you had a small datagram (56 bytes or less) to deliver, and you did not care about reliability, you could
ask phy to deliver it for you. But, if your datagram was larger, even if you did not need reliability, you’d
have to ask uwlink to deliver it for you.



The MTU parameter is the DATAGRAM service is actually
org.arl.unet.DatagramParam.MTU. Since we only have one MTU parameter that phy

advertises, there is no ambiguity in using phy.MTU. But if you wanted to explicitly ask
for the parameter by its fully qualified name, you could send a ParameterReq for it: phy
<< new ParameterReq().get(org.arl.unet.DatagramParam.MTU)

13.4. Service list
The following services are currently defined in UnetStack:

Short name Fully qualified name Description Read…

DATAGRAM org.arl.unet.Services.DATAG
RAM

Send and receive datagrams Chapter 14

PHYSICAL org.arl.unet.Services.PHYSI
CAL

Physical layer Chapter 15

BASEBAND org.arl.unet.Services.BASEB
AND

Arbitrary waveform transmission &
recording

Chapter 16

RANGING org.arl.unet.Services.RANGI
NG

Ranging & synchronization Chapter 17

NODE_INFO org.arl.unet.Services.NODE_
INFO

Node & network information Chapter 18

ADDRESS_RE
SOLUTION

org.arl.unet.Services.ADDRE
SS_RESOLUTION

Address allocation & resolution Chapter 19

LINK org.arl.unet.Services.LINK Datagram transmission over a single hop Chapter 21

MAC org.arl.unet.Services.MAC Medium access control Chapter 20

ROUTING org.arl.unet.Services.ROUTI
NG

Routing of datagrams over a multihop
network

Chapter 22

ROUTE_MAIN
TENANCE

org.arl.unet.Services.ROUTE
_MAINTENANCE

Discovery & maintenance of routes in a
multihop network

Chapter 22

TRANSPORT org.arl.unet.Services.TRANS
PORT

Datagram transmission over a multihop
network

[Transport
and
reliability]

REMOTE org.arl.unet.Services.REMOT
E

Remote command execution, text
messaging & file transfer

Chapter 24

STATE_MAN
AGER

org.arl.unet.Services.STATE
_MANAGER

State persistence across node reboots Chapter 25

SCHEDULER org.arl.unet.Services.SCHED
ULER

Sleep-wake scheduling for energy
management

Chapter 26

71

Short name Fully qualified name Description Read…

SHELL org.arl.fjage.shell.Service
s.SHELL

Commmand execution & file management
services

Chapter 27

You can enjoy reading more about these services in the next few chapters.

72

Chapter 14. Datagram service
org.arl.unet.Services.DATAGRAM

Unets are all about sending datagrams between nodes!

The DATAGRAM service is, therefore, one of the fundamental services that many agents provide.
However, different agents have very different capabilities in terms of what they can do with datagrams.
Let’s take a look at what the service offers, and how to use it effectively.

14.1. Overview

14.1.1. Messages

Notation guide

Every request message requires a response. When describing request messages, we also specify
what responses to expect, through the notation:

• request message ⇒ possible response messages — short description

On the other hand, notification messages do not have corresponding responses, so we only
describe them:

• notification message — short description

Agents offering the DATAGRAM service support messages to transmit and receive datagrams:

• DatagramReq ⇒ AGREE / REFUSE / FAILURE

• DatagramNtf — sent to the agent’s topic, when a datagram is received

14.1.2. Parameters

Agents offering the DATAGRAM service support the following parameter:

• MTU — maximum datagram size in bytes

• RTU — recommended datagram size in bytes

14.1.3. Capabilities

Agents may support several optional capabilities:

FRAGMENTATION

Agents capable of fragmentation may break a datagram into smaller datagrams, transmit each of them
across the network, and reassemble them on the peer node.

RELIABILITY

73

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramParam.html#MTU
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramParam.html#RTU
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramCapability.html#FRAGMENTATION
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramCapability.html#RELIABILITY

If an agent advertises relaibility, it is able to acknowledge the successful delivery of the datagram.
Reliability is enabled on a per-datagram basis by setting the reliability flag in the DatagramReq.
Depending on whether the datagram could be successfully delivered or not, one of the following
notifications is generated:

• DatagramDeliveryNtf — sent to requestor

• DatagramFailureNtf — sent to requestor

PROGRESS

Agents capable of reporting progress do so by periodically sending the following notification for long
data transfers:

• DatagramProgressNtf — sent to requestor on the transmitting node, and agent’s topic on the receiving
node

CANCELLATION

If an agent supports cancellation, it honors the following request for stopping an ongoing data transfer:

• DatagramCancelReq ⇒ AGREE / REFUSE / FAILURE / NOT_UNDERSTOOD (if unsupported)

PRIORITY

Agents advertising this capability prioritize datagrams with higher priority indicated in the DatagramReq.

TTL

Agents that spool DatagramReq over extended periods of time usually advertise this capability. They
discard DatagramReq that are undelivered after the time-to-live (ttl attribute of the DatagramReq) has
expired.

COMPRESSION

Agents advertising this capability may apply data compression to incoming DatagramReq messages. If it
does so, the peer agent will decompress the data before sending the DatagramNtf.

14.2. Examples
Fire up your 2-node network again, and open two browser windows — one connecting to node A’s shell,
and the other to node B’s shell.

On node B:

74

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramDeliveryNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramFailureNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramCapability.html#PROGRESS
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramProgressNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramCapability.html#CANCELLATION
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramCancelReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramCapability.html#PRIORITY
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramCapability.html#TTL
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/DatagramCapability.html#COMPRESSION

> agentsForService(org.arl.unet.Services.DATAGRAM)
[transport, router, uwlink, phy]
> phy.MTU
56
> uwlink.MTU
848
> uwlink << new CapabilityReq()
CapabilityListRsp:INFORM[RELIABILITY,FRAGMENTATION]
> subscribe uwlink

We obtained a list of agents which provide the DATAGRAM service. We checked the MTU of the phy and
uwlink agents, and found them to be 56 bytes and 848 bytes respectively. We decided to use the uwlink
agent to communicate over a single-hop link between node A and B, and checked its capabilities. We
found that it supports reliability and fragmentation. We then decided to listen to all datagrams received
by node B’s uwlink agent by subscribing to its topic.

On node A:

> uwlink << new DatagramReq(to: 31, data: new byte[64]) ①
AGREE
> uwlink << new DatagramReq(to: 31, data: new byte[64], reliability: true) ②
AGREE
uwlink >> DatagramDeliveryNtf:INFORM[id:4dda055e-a533-401f-89c8-a01065ca5d70 to:31] ③
> uwlink << new DatagramReq(to: 37, data: new byte[64], reliability: true) ④
AGREE
uwlink >> DatagramFailureNtf:INFORM[id:bc65e643-6161-4b06-913c-3ff4f6985d36 to:37] ⑤
> uwlink << new DatagramReq(to: 0, data: new byte[64]) ⑥
AGREE
> uwlink << new DatagramReq(to: 0, data: new byte[64], reliability: true) ⑦
REFUSE: Reliability not supported for broadcast
> uwlink << new DatagramReq(to: 31, data: new byte[1024]) ⑧
REFUSE: Data length exceeds MTU

① Send an unreliable datagram to node 31.

② Send a reliable datagram to node 31.

③ Successful delivery of reliable datagram reported.

④ Send a reliable datagram to node 37. Since node 37 does not exist in this network, this should
eventually fail.

⑤ Delivery failure reported (after trying for a few minutes).

⑥ Broadcast an unreliable datagram.

⑦ Broadcast request for reliable datagram is refused, as reliability requires a response from peer node
and therefore cannot be supported on broadcast.

⑧ Datagram transmission request for data larger than MTU is also refused.

If we look at the shell for node B, we should see the 3 successfully delivered datagrams:

uwlink >> DatagramNtf:INFORM[from:232 to:31 (64 bytes)]
uwlink >> DatagramNtf:INFORM[from:232 to:31 (64 bytes)]
uwlink >> DatagramNtf:INFORM[from:232 (64 bytes)]

75


Agent uwlink uses the PHYSICAL service (agent phy) to deliver the data. Since the
phy.MTU is only 56 bytes, but our datagrams were 64 bytes, unbeknownst to us, the
uwlink agent must have been fragmenting these datagrams and reassembling them on
the other side!

14.3. Short-circuit delivery
We were able to successfully deliver datagrams from node A to node B in the examples in the previous
section. We not only saw the DatagramNtf messages on node B, but also got DatagramDeliveryNtf on node A
if reliability was enabled.

Let’s try it again, but with a small difference. On node A:

> uwlink << new DatagramReq(to: 31, data: new byte[32])
AGREE

We transmitted a smaller datagram, and node A happily accepted it for delivery. However, if we look at
the shell for node B, we don’t see a DatagramNtf message corresponding to the datagram, even though
you had already subscribed to uwlink! What’s going on? Let’s try it again, but this time enable reliability:

> uwlink << new DatagramReq(to: 31, data: new byte[32], reliability: true)
AGREE
uwlink >> DatagramDeliveryNtf:INFORM[id:4aaa86e5-9a56-46f8-bc1a-f6be33af03a4 to:31]

We see that the datagram was indeed delivered! And now, if we look at node B’s shell, we’ll see the
delivery notification:

uwlink >> DatagramNtf:INFORM[from:232 to:31 (32 bytes)]

It seems that enabling reliability successfully delivered the datagram, but otherwise the DatagramNtf
message did not appear on node B’s shell! You can try this many times, and the result will be the same.
So it can’t be random packet loss in the network either. What’s going on?

To try and troubleshoot this, let’s subscribe to notifications from the phy agent to see if the data is
arriving at the physical layer. On node B:

> subscribe phy

On node A, transmit the unreliable small datagram again:

> uwlink << new DatagramReq(to: 31, data: new byte[32])
AGREE

On node B, we now see a couple of notifications:

76

phy >> RxFrameStartNtf:INFORM[type:DATA rxTime:3956973678]
phy >> RxFrameNtf:INFORM[type:DATA from:232 to:31 rxTime:3956973678 (32 bytes)]

The first notification says that the physical layer detected the start of a data frame. The second
notification is for a received frame with 32 bytes from node 232 to node 31. That’s our datagram!!! But
why is it delivered by phy and not uwlink, when it was sent by uwlink on node A? And why is it a
RxFrameNtf instead of a DatagramNtf?

Let’s solve the second mystery first. An RxFrameNtf is a subclass of DatagramNtf, so it is indeed a
DatagramNtf message. We can easily verify this on node B:

> ntf
RxFrameNtf:INFORM[type:DATA from:232 to:31 rxTime:3956973678 (32 bytes)]
> ntf instanceof DatagramNtf
true

Variable ntf contains the last notification received. It is the RxFrameNtf, and it is indeed an instance of
DatagramNtf. So, we indeed got the datagram on node B, and it was delivered as a DatagramNtf with the
correct metadata.

But why was it sent on phy agent’s topic and not uwlink agent’s topic, like all other datagrams we
transmitted?

This is due to an optimization known as short-circuit delivery (introduced in UnetStack 3), depicted in
Figure 8. The uwlink agent on node A looked at the unreliable DatagramReq for 32 bytes and realized that it
is within the phy agent’s capability (no reliability needed, and the datagram size is less than phy.MTU) to
deliver this without the help of the uwlink agent. It delegated the task to the phy agent, which in turn send
the datagram to its peer on node B, and therefore it was delivered to us by the phy agent on node B. This
delegation not only reduces computation, but more importantly reduces the overhead of link headers in
the frame, and therefore save valuable bandwidth in a resource-constrained underwater network.

Short-circuit delivery is not only done by uwlink, but by all agents supporting the DATAGRAM service. If a
downstream agent is capable of delivering the datagram, the delivery is delegated automatically.


As a result of short-circuit delivery optimization, you need to subscribe to all
DATAGRAM service providers to receive DatagramNtf messages, and not just the one
you send the datagram via.

77

Figure 8. With short-circuit delivery, uwlink on node A recognizes the DatagramReq to be within the phy agent’s
capability, and delegates it without adding any headers. On node B, the received frame is directly delivered as a
DatagramNtf by the phy agent, since uwlink functionality is not required.

On node B, we should have done this in the first place:

> agentsForService(org.arl.unet.Services.DATAGRAM).each { subscribe it }

This single-liner in Groovy iterates over the list of agents providing the DATAGRAM service, and
subscribes to the topic of each agent in that list.


Agents should use the call subscribeForService(org.arl.unet.Services.DATAGRAM)

instead. This call subscribes to all agents providing teh DATAGRAM service, but has an
added advantage: it also asks the agent to keep track of new agents that are added to
the stack later, and subscribes to them if they provide the DATAGRAM service.

14.4. Datagrams and the UnetSocket API
The UnetSocket API also supports delivery of datagrams. Let’s try it. On node A:

> s = new UnetSocket(this);
> s.send new DatagramReq(to: 31, data: new byte[32])
true

On node B, we will see the datagram delivery:

78

uwlink >> DatagramNtf:INFORM[from:232 to:31 (32 bytes)]

Note that we did not have to specify an agent or service when making the datagram request via the
UnetSocket API. An appropriate agent was automatically selected by the API for us. In this case, the
uwlink agent was used by the API to deliver the datagram.

79

Chapter 15. Physical service
org.arl.unet.Services.PHYSICAL

Agents offering the PHYSICAL service are most commonly modem drivers and modem simulators. They
support messages and parameters that are explained below. PHYSICAL service providers may also
provide optional capabilities to send frames triggered at a specified time, or send timestamped frames
where the timestamp is embedded in the transmitted frame.



Agents implementing the PHYSICAL service typically directly access the channel,
bypassing any MAC protocol that may be in use in the network. It is highly
recommended that clients wishing to use the PHYSICAL service consult with the MAC
service for advice on when it is safe to access the channel, so as not to adversely affect
the network performance.

15.1. Overview
All agents supporting the PHYSICAL service must also support the DATAGRAM service (Chapter 14).

15.1.1. Messages

Agents supporting the PHYSICAL service provide a set of messages to manage frame transmission and
reception:

• TxFrameReq ⇒ AGREE / REFUSE / FAILURE — transmit a frame

• TxRawFrameReq ⇒ AGREE / REFUSE / FAILURE — transmit a frame without headers

• ClearReq ⇒ AGREE / REFUSE / FAILURE — cancel all ongoing and pending transmissions

• RxFrameNtf — sent to agent’s topic when a frame addressed to the node is received, and the agent’s
SNOOP sub-topic when a frame addressed to other nodes is overheard

• TxFrameNtf — sent to requestor when a frame is transmitted

• RxFrameStartNtf — sent to agent’s topic when a frame is detected

• TxFrameStartNtf — sent to agent’s topic when a frame transmission is started

• BadFrameNtf — sent to agent’s topic when a bad frame is received

• CollisionNtf — sent to agent’s topic when a frame is detected (and dropped) while another frame is
being received

The TxFrameReq class extends a DatagramReq to add physical layer options, and the RxFrameNtf class extends
a DatagramNtf to add physical layer metadata.

15.1.2. Parameters

Agents offering the PHYSICAL service support the following parameters:

• rxEnable — true if reception is enabled, false otherwise

• propagationSpeed — signal propagation speed in m/s

80

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/TxFrameReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/TxRawFrameReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/ClearReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/RxFrameNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/Physical.html#SNOOP
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/TxFrameNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/RxFrameStartNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/TxFrameStartNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/BadFrameNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/CollisionNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalParam.html#rxEnable
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalParam.html#propagationSpeed

• time — current physical layer clock time in microseconds

• busy — true if modem is busy transmitting/receiving (carrier sense), false if modem is idle

• refPowerLevel — reference source level in dB (re micro-Pascals @ 1m for underwater modems)

• maxPowerLevel — maximum allowable transmission power in dB re refPowerLevel

• minPowerLevel — minimum allowable transmission power in dB re refPowerLevel

• rxSensitivity — reference receive sensitivity (dB re micro Pascals for underwater modems)


All physical layer timestamps are in microseconds as per the clock provided by the
time parameter. This clock is generally not synchronized with the platform clock
(system time).

In addition to the above parameters, agents also support indexed (frame type) parameters:

• frameDuration — frame duration in seconds (maximum duration in case of variable frame length)

• powerLevel — transmission power in dB re refPowerLevel

• errorDetection — number of bytes used for error detection

• frameLength — frame length in bytes (maximum length in case of variable frame length)

• maxFrameLength — maximum possible frame length in bytes

• fec — forward error correction (FEC) code (0 = none/default, otherwise base 1 index from fecList)

• fecList — list of available FEC code names (in the order of increasing robustness), may be null if FEC
change not supported

• dataRate — effective frame data rate (bps)

• llr — true to enable log-likelihood ratio reporting in BadFrameNtf, false otherwise

Seconds, milliseconds or microseconds?

You’ll notice that we use seconds as a unit of time in some places, and milliseconds in others, and
microseconds in yet others. While we recognize that this can be confusing at times, there is a good
reason for this.

Whenever time or duration can be a float, we prefer to use seconds as our unit of time. We also
define some Groovy syntactic sugar to allow writing down values in our preferred units, while
automatically converting them to seconds. For example: 10.s → 10.0, 10.ms → 0.01, and 1.minute →
60.

Many existing Java and fjåge API calls (e.g. currentTimeMillis(), WakerBehavior(), TickerBehavior())
use the long data type for time in milliseconds. Where UnetStack inherits that API, we have no
choice but to stick with milliseconds. Do be careful NOT to use values such as 10.ms there, as these
are really values in seconds.

The only time value in microseconds is the PHYSICAL service’s time parameter, and the
corresponding rxTime, recTime and txTime timestamps. This is also inherited by the
synchronization time offset between node times in the RANGING service.

81

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalParam.html#time
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalParam.html#busy
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalParam.html#refPowerLevel
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalParam.html#maxPowerLevel
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalParam.html#minPowerLevel
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalParam.html#rxSensitivity
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalChannelParam.html#frameDuration
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalChannelParam.html#powerLevel
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalChannelParam.html#errorDetection
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalChannelParam.html#frameLength
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalChannelParam.html#maxFrameLength
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalChannelParam.html#fec
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalChannelParam.html#fecList
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalChannelParam.html#dataRate
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalChannelParam.html#llr

Two frame types are defined:

• CONTROL frame = 1

• DATA frame = 2

15.1.3. Capabilities

Agents may support several optional capabilities:

TIMESTAMPED_TX

Agents advertising this capability are able to transmit frames with a transmission timestamp (start of
transmission) encapsulated in the frame. This is requested through the timestamped flag in the TxFrameReq
message. In order to do the timestamping, the frame has to be scheduled for transmission after a short
delay. This delay is configured via an additional parameter:

• timestampedTxDelay — delay in seconds to transmit timestamped frames

TIMED_TX

Agents advertising this capability are able to start transmitting a frame at a specified time (on a best
effort basis). The time is given in the txTime attribute of the TxFrameReq message.

JANUS

If an agent supports the ANEP-87 JANUS standard, it advertises this capability. An additional frame type
(indexed parameter set) is defined:

• JANUS frame = 3

The JANUS capability also adds one parameter:

• janus — true for JANUS frame type, false for all other frame types

It also adds two JANUS-specific messages that are supported:

• TxJanusFrameReq ⇒ AGREE / REFUSE / FAILURE — transmit a JANUS frame

• RxJanusFrameNtf — sent to agent’s topic when a JANUS frame is received

FEC_DECODING

If an agent advertises this capability, it supports an additional request to perform FEC decoding:

• FecDecodeReq ⇒ AGREE / REFUSE / FAILURE — attempt FEC decoding a frame, and if successful, send out a
RxFrameNtf

15.2. CONTROL and DATA channels
The physical layer in UnetStack typically supports 2 logical channels (3 if JANUS is supported). The
CONTROL channel provides low-rate, robust communication that allows exchange of small amounts of
control information in the network. The DATA channel is a usually a higher rate communication link,

82

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/Physical.html#CONTROL
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/Physical.html#DATA
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalCapability.html#TIMESTAMPED_TX
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalParam.html#timestampedTxDelay
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalCapability.html#TIMED_TX
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalCapability.html#JANUS
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/Physical.html#JANUS
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalChannelParam.html#janus
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/TxJanusFrameReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/RxJanusFrameNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/PhysicalCapability.html#FEC_DECODING
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/phy/FecDecodeReq.html

but may require tuning to operate well in various environmental conditions.



The configurable parameters of the CONTROL and DATA channels depend strongly on
the device (modem) in use. The Unet simulator provides a simplified physical layer
(HalfDuplexModem) that captures the essential aspects of the communication using the
two channels, exposing only a limited set of parameters. When configuring a real
network, you should refer to your modem’s manual on advise on how best to set up
the physical layer parameters.

Fire up the 2-node network simulation and connect to node A’s shell. If you simply type phy, you can
explore the physical layer parameters for the node:

> phy
« Half-duplex modem »

Generic half duplex modem simulator.

[org.arl.unet.DatagramParam]
 MTU ⇒ 56
 RTU ⇒ 56

[org.arl.unet.phy.PhysicalParam]
 busy ⇒ false
 maxPowerLevel = 0.0
 minPowerLevel = -96.0
 propagationSpeed ⇒ 1534.4574
 refPowerLevel = 185.0
 rxEnable = true
 rxSensitivity = -200.0
 time ⇒ 2178921675
 timestampedTxDelay = 1.0

The phy.MTU and phy.RTU parameters tells us the maximum and recommended amount of user data that
can be transmitted in a single frame (56 bytes in this case) respectively. This is based on the DATA
channel, as we will see shortly, since DatagramReq are fulfilled using the DATA channel. The PhysicalParam
parameters provide us information on whether the channel is busy, transmission power levels
supported, receiver sensitivity, and propagation speed of the signal (e.g. speed of sound for underwater
modems). The phy.time parameter is a microsecond resolution clock that is used to timestamp all
physical layer events such as frame transmission, reception, etc.

We can dig deeper into the parameters for the CONTROL and DATA channel separately:

83

> phy[CONTROL]
« PHY »

[org.arl.unet.DatagramParam]
 MTU ⇒ 16
 RTU ⇒ 16

[org.arl.unet.phy.PhysicalChannelParam]
 dataRate = 202.10527
 errorDetection ⇒ 1
 fec ⇒ 0
 fecList ⇒ null
 frameDuration ⇒ 0.95
 frameLength = 24
 janus = false
 llr ⇒ false
 maxFrameLength = 128
 powerLevel = -10.0

> phy[DATA]
« PHY »

[org.arl.unet.DatagramParam]
 MTU ⇒ 56
 RTU ⇒ 56

[org.arl.unet.phy.PhysicalChannelParam]
 dataRate = 731.4286
 errorDetection ⇒ 1
 fec ⇒ 0
 fecList ⇒ null
 frameDuration ⇒ 0.7
 frameLength = 64
 janus = false
 llr ⇒ false
 maxFrameLength = 512
 powerLevel = -10.0


The values you see above are specific to this simulated network, and will generally be
different for different networks, depending on the devices that are being used and the
environment that they are deployed in.

Here are a few important parameters to take note of:

• Note that MTU for the CONTROL channel is 16 bytes, whereas DATA channel’s MTU is 56 bytes.
CONTROL frames typically carry less data, but are more robust.

• The frameLength for the CONTROL and DATA channels are 8 bytes longer than the corresponding MTU.
The difference is due to header information that the frames carry. The number of bytes taken by the
header is device dependent, and also a function of network configuration (e.g. changes in
node.addressSize may change header size).

• Typically physical layer agents allow setting of the frameLength parameter, and the MTU parameter is
automatically determined based on the necessary headers. The maxFrameLength parameter indicates
the maximum size of the frame supported.

• The frameDuration for the CONTROL channel is about 0.95 seconds, whereas that for the DATA

84

channel is 0.7 seconds. While the CONTROL frames carry less data, they also have lower data rate
and so may have comparable duration as the DATA frames.

• The dataRate reported by the channel is the effective data rate in bps including the header bits, i.e., it
is the frame length in bits divided by the frame duration.

• The powerLevel parameter controls the transmission power used by the channel. This value is in dB,
with reference to the phy.refPowerLevel, and may range between phy.minPowerLevel and
phy.maxPowerLevel.

• The errorDetection parameter reports the number of bytes used for error detection CRC (value of 1
indicates that we are using a 8-bit CRC). Some modems will allow you to set this to 2 to switch to 16-
bit CRC, if you desire a lower probability of accepting a frame with some bit errors.

15.3. Modem physical layer
In the previous section, we explored several parameters from a simplified simulated physical layer. Next
let’s look at a real modem. If you are lucky enough to own one with UnetStack on it, you can connect to
it’s shell now. Otherwise, we can use Unet audio SDOAM as our test modem:

$ bin/unet audio
Modem web: http://localhost:8080/

On the web shell for the modem:

85

> phy
« Physical layer »

Provides software-defined physical layer communication services (including error detection & correction).

[org.arl.unet.DatagramParam]
 MTU ⇒ 31
 RTU ⇒ 31

[org.arl.unet.phy.PhysicalParam]
 busy ⇒ false
 maxPowerLevel ⇒ 0.0
 minPowerLevel ⇒ -138.0
 propagationSpeed = 1500.0
 refPowerLevel ⇒ 0.0
 rxEnable = true
 rxSensitivity ⇒ 0.0
 time = 4167772
 timestampedTxDelay = 1.0

[org.arl.yoda.ModemParam]
 adcrate ⇒ 48000.0
 bbsblk ⇒ 6000
 bbscnt = 0
 bpfilter = true
 clockCalib = 1.0
 dacrate ⇒ 96000.0
 downconvRatio = 4.0
 fan = false
 fanctl = 45.0
 fullduplex = false
 gain = 0.0
 hpc = false
 inhibit = 120
 isc = true
 loopback = false
 model ⇒ Unet audio
 mute = true
 noise ⇒ -105.6
 npulses = 1
 pbsblk = 65536
 pbscnt = 0
 post = null
 poweramp = false
 preamp = true
 pulsedelay = 0
 serial ⇒ unetaudio
 standby = 15
 upconvRatio ⇒ 8.0
 vendor ⇒ UnetStack
 voltage ⇒ 0.0
 wakeupdelay = 400
 wakeuplen = 8000

For brevity, we have omitted the baseband service and scheduler service parameters in the listing above.
Even then, there are many parameters that allow you to configure the SDOAM. We cannot cover each
parameter in detail here, but we encourage you to explore the help pages for the parameters by simply
typing help phy. followed by the parameter name.

86

Further, let’s look at the indexed parameters for the CONTROL channel:

> phy[CONTROL]
« PHY »

[org.arl.unet.DatagramParam]
 MTU ⇒ 13
 RTU ⇒ 13

[org.arl.unet.phy.PhysicalChannelParam]
 dataRate ⇒ 70.588234
 errorDetection ⇒ true
 fec = 1
 fecList ⇒ [ICONV2]
 frameDuration ⇒ 2.04
 frameLength = 18
 janus = false
 llr = false
 maxFrameLength ⇒ 796
 powerLevel = -42.0

[org.arl.yoda.FhbfskParam]
 chiplen = 1
 fmin = 9520.0
 fstep = 160.0
 hops = 13
 scrambler = 0
 sync = true
 tukey = true

[org.arl.yoda.ModemChannelParam]
 basebandExtra = 0
 basebandRx = false
 modulation = fhbfsk
 preamble = (480 samples)
 test = false
 threshold = 0.25
 valid ⇒ true

Again, we cannot cover all the parameters in detail here, but will draw your attention to a few important
ones. You see that the modulation for the CONTROL channel is set to 'fhbfsk' (frequency-hopping binary
frequency shift keying). Depending on your modem, different modulations may be supported. Once a
modulation scheme is chosen, you see additional modulation-dependent parameters. In this case, these
are the org.arl.yoda.FhbfskParam parameters such as fmin, fstep, hops, chiplen, tukey, etc. These
parameters allow you to control the modulation’s frequency band, number of hops, chip duration,
windowing, etc.



If you change modulation parameters, you have to remember to do it on all your
modems in the network. Otherwise they will be speaking different languages, and they
won’t be able to understand each other. Not all combination of modulation parameters
are valid. The valid parameter tells us if the current setting is valid or not. If the setting
is invalid, all transmission requests will be refused.

The preamble parameter determines a detection preamble that is transmitted before each frame. This is
used by the receiving modem to determine the start of a frame. The threshold parameter controls the
detection probability and false alarm rate for frame detection. A lower threshold will improve detection

87

probability, but increase false alarm rate.

If the test flag is set on the transmission and reception modems, each transmit frame is filled with
known test data. This allows the receiving modem to compute the bit error rate (BER), even when the
frame has too many errors for FEC to be able to correct.

15.4. Transmitting & receiving using Unet audio
If you have two computers with speakers and microphones, you could run Unet audio on both, and
communicate between the two. If you happen to have only one computer handy, do not worry — we can
get one Unet audio instance to transmit and receive at the same time. This is full-duplex communication!


Real modems typically cannot do full-duplex communication because the weak
incoming signals are masked by clutter from the strong outgoing signal. However, by
adjusting the volume of your computer carefully, you can easily do full-duplex
communication on your Unet audio SDOAM.

On Unet audio shell, enable full-duplex operation and try a transmission (you should be able to hear it
from your computer speaker!). Your output might not look exactly the same, but let’s go over all the
notifications we got and see if we can understand all of them:

> phy.fullduplex = true
true
> subscribe phy
> phy << new TxFrameReq()
AGREE
phy >> TxFrameStartNtf:INFORM[type:CONTROL txTime:79322682] ①
phy >> RxFrameStartNtf:INFORM[type:CONTROL rxTime:79309353 detector:0.87] ②
phy >> RxFrameStartNtf:INFORM[type:DATA rxTime:80659519 detector:0.26] ③
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:79310432] ④
phy >> RxFrameNtf:INFORM[type:CONTROL from:1 rxTime:79309353 rssi:-29.3] ⑤
phy >> BadFrameNtf:INFORM[type:DATA rxTime:80659519 rssi:-38.5 (18 bytes)] ⑥

① Transmission of our requested CONTROL frame has started.

② Our frame being transmitted was detected as a CONTROL frame, and reception has started.

③ Our frame being transmitted was wrongly detected (false alarm) as a DATA frame.

④ Transmission of our frame was completed.

⑤ Reception of the frame was completed, and successful.

⑥ The wrongly detected frame resulted in data that did not satisfy CRC, and hence reported as a bad
frame.

To get rid of the false alarm on the DATA channel, we could either increase the detection threshold or
turn off the detector completely (phy[DATA].threshold = 0). For now, we’ll do the latter. Let’s also turn on
the phy[CONTROL].test flag so that we can measure communication performance in terms of BER. To
measure BER before error correction, we also need to turn off phy[CONTROL].fec:

88

> phy[DATA].threshold = 0
0
> phy[CONTROL].test = true
true
> phy[CONTROL].fec = 0
0

Now we can make 10 transmissions, 2 seconds apart, and watch the BER of the received frames:

> 10.times { phy << new TxFrameReq(); delay(2000); }
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:204359766]
phy >> RxFrameNtf:INFORM[type:CONTROL rxTime:204385187 rssi:-28.9 cfo:0.0 ber:0/144 (18 bytes)]
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:205578432]
phy >> RxFrameNtf:INFORM[type:CONTROL rxTime:205603853 rssi:-28.4 cfo:0.0 ber:0/144 (18 bytes)]
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:207567766]
phy >> RxFrameNtf:INFORM[type:CONTROL rxTime:207589186 rssi:-28.5 cfo:0.0 ber:0/144 (18 bytes)]
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:209583766]
phy >> RxFrameNtf:INFORM[type:CONTROL rxTime:209609187 rssi:-28.2 cfo:0.0 ber:0/144 (18 bytes)]
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:211573099]
phy >> RxFrameNtf:INFORM[type:CONTROL rxTime:211594519 rssi:-28.3 cfo:0.0 ber:0/144 (18 bytes)]
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:213589099]
phy >> RxFrameNtf:INFORM[type:CONTROL rxTime:213614520 rssi:-28.1 cfo:0.0 ber:0/144 (18 bytes)]
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:215578432]
phy >> RxFrameNtf:INFORM[type:CONTROL rxTime:215599853 rssi:-28.5 cfo:0.0 ber:0/144 (18 bytes)]
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:217594432]
phy >> RxFrameNtf:INFORM[type:CONTROL rxTime:217619853 rssi:-28.2 cfo:0.0 ber:0/144 (18 bytes)]
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:219583766]
phy >> RxFrameNtf:INFORM[type:CONTROL rxTime:219605186 rssi:-28.0 cfo:0.0 ber:0/144 (18 bytes)]
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:221599766]
phy >> RxFrameNtf:INFORM[type:CONTROL rxTime:221625187 rssi:-27.7 cfo:0.0 ber:0/144 (18 bytes)]

For brevity, we have omitted the TxFrameStartNtf and RxFrameStartNtf messages. We see that no bits were
in error, out of 144 transmitted bits. We had perfect communication, even without FEC! This is not
surprising since the speaker and microphone are very close (and hence good signal-to-noise ratio), but
real channels are rarely so forgiving. You can try this between 2 computers, and things may not be as
rosy.

Feel free to play around with the parameters of the modulation scheme and try transmissions to get a
feel for how the parameters affect communication performance. Since your transmission and reception
modems are the same, you only need to set the parameters once! In real life, you’ll need to set the same
parameters on all modems in your network.


Remember to turn off the phy[CONTROL].test flag before trying any data transfer. While
the flag is on, no user data can be carried by the transmitted frames.

15.5. Timed and timestamped transmissions
To explore timed and timestamped transmissions, let’s go back to our 2-node network simulation. On the
shell for node A:

> phy << new CapabilityReq()
CapabilityListRsp:INFORM[TIMESTAMPED_TX,TIMED_BBREC,TIMED_BBTX,TIMED_TX]

89

We see that the phy agent supports the TIMESTAMPED_TX and TIMED_TX optional capabilities. Let us try them
out. On node B:

> subscribe phy

Going back to node A, send a timestamped frame:

> phy << new TxFrameReq(timestamped: true)
AGREE
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:2489196375]

We see that the frame was transmitted at time 2489196375 (when you try this, the time will of course be
different). You should see the RxFrameNtf for this frame on node B:

phy >> RxFrameStartNtf:INFORM[type:CONTROL rxTime:687419054]
phy >> RxFrameNtf:INFORM[type:CONTROL from:232 rxTime:687419054 txTime:2489196375]

Note that the RxFrameNtf now has an additional txTime field that’s populated, and the timestamp in there
is the same as the txTime on node A’s TxFrameNtf. The frame was timestamped before transmission, and
transmitted at exactly the intended time.


Timestamps take up bits in the transmitted frame. Your effective MTU for frames with
timestamps is 6 bytes less than the advertised MTU.



Do bear in mind that the phy.time clocks on node A and B may not be synchronized. So
timestamps from one node cannot be directly compared with timestamps on another
node. In the above example, the rxTime was 687,419,054 microseconds, whereas the
txTime was 2,489,196,375 microseconds. This does not mean that the frame was
received before it was transmitted! It’s just that node A and B have an offset between
their clocks.

Sometimes you may not need to transmit a timestamped frame, but you do want the frame to be
transmitted at a specified time. On node A:

> t = phy.time + 5000000; println(t); phy << new TxFrameReq(txTime: t) ①
3174864375 ②
AGREE
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:3174864375] ③

① t is the current time + 5 seconds. We ask for a frame to be transmitted at time t.

② The value of time t is printed immediately (due to the println(t)).

③ The TxFrameNtf message will appear after a few seconds, once the transmission is made. Note that the
actual txTime when the transmission occurred matches with our requested value t.

If you check node B’s shell, you’ll find the corresponding RxFrameNtf, but it will not have a txTime field, as
the frame transmitted was not timestamped.

90


The transmission time is honored on a best effort basis, which means that there could
be a small difference between the requested time and the actual transmit time.

15.6. Snooping frames meant for other nodes
If you’re familiar with Ethernet network interface cards, you may have come across promiscuous mode.
In this mode, the network card receives all packets that it hears, not just the ones that are addressed to
the node. Agents providing the PHYSICAL service essentially do this continuously, but they send the
notifications for frames intended for other nodes on a special sub-topic called SNOOP.

With the 2-node network simulation, let’s first only subscribe to the phy agent’s topic on node B:

> subscribe phy

From node A, transmit a frame to node B and to node C (node C does not exist in this network):

> phy << new TxFrameReq(to: host('B'))
AGREE
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:4622534375]
> phy << new TxFrameReq(to: host('C'))
AGREE
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:4623823375]

On node B, you’ll find that it receives the RxFrameStartNtf for both transmissions, but only the RxFrameNtf
for the transmission addressed to node B:

phy >> RxFrameStartNtf:INFORM[type:CONTROL rxTime:2820757054]
phy >> RxFrameNtf:INFORM[type:CONTROL from:232 to:31 rxTime:2820757054]
phy >> RxFrameStartNtf:INFORM[type:CONTROL rxTime:2822046054]

The RxFrameStartNtf is sent when a frame is detected. At that point in time, the agent has no idea whom
the frame is intended for, because the frame contents have not yet arrived. Only when the frame is
received and decoded does the agent know the destination address. Seeing that the second frame was
intended for node C, node B does not report a RxFrameNtf for it.

If you were interested in snooping conversations between other nodes, you could subscribe to the
SNOOP topic on node B:

> subscribe topic(phy, org.arl.unet.phy.Physical.SNOOP)

Now try transmitting another frame from node A to node C. On node A:

> phy << new TxFrameReq(to: host('C'))
AGREE
phy >> TxFrameNtf:INFORM[type:CONTROL txTime:4899843375]

Now you’ll see on node B that the corresponding RxFrameNtf is received:

91

phy >> RxFrameStartNtf:INFORM[type:CONTROL rxTime:3098066054]
phy >> RxFrameNtf:INFORM[type:CONTROL from:232 to:74 rxTime:3098066054]

The to address of 74 corresponds to host('C'), but the frame is available for agents on node B through
the SNOOP topic.

92

Chapter 16. Baseband service
org.arl.unet.Services.BASEBAND

Software-defined modems often allow developers to transmit and record arbitrary waveforms. This
functionality is encapsulated in the baseband service of UnetStack.



Agents implementing the baseband service typically directly access the channel,
bypassing any MAC protocol that may be in use in the network. It is highly
recommended that clients wishing to use the baseband service for transmitting
arbitrary waveforms consult with the MAC service for advice on when it is safe to
access the channel, so as not to adversely affect the network performance.

16.1. Overview
Agents offering the baseband service are most commonly modem drivers (and simulators). They support
a set of messages and parameters that are explained below. Baseband service providers may also
provide optional capabilities to send or record signals at a specified time, or based on premable
detection.

16.1.1. Messages

Agents supporting the baseband service provide messages for arbitrary signal transmission and
recording:

• TxBasebandSignalReq ⇒ AGREE / REFUSE / FAILURE — transmit a signal

• RecordBasebandSignalReq ⇒ AGREE / REFUSE / FAILURE — record a signal

• GetPreambleSignalReq ⇒ REFUSE / BasebandSignal — get baseband preamble signal

• RxBasebandSignalNtf — signal recording sent to requestor, or to agent’s topic if the recording was not
specifically requested

During signal transmission, an agent implementing the baseband service sends out TxFrameStartNtf and
TxFrameNtf, as described in the PHYSICAL service (Chapter 15). Similarly, if recording is triggered on a
preamble detection, the agent sends out a RxFrameStartNtf as described in the PHYSICAL service.

Detection preambles are often added to transmitted signals for the receiving modem to identify the
incoming signals. The receiving modem can capture the signal when it detects the preamble, and then
send a RxBasebandSignalNtf. If a modem supports multiple preambles, the TxBasebandSignalReq can
specify the preamble to be used. Setting the preamble to 0 results in a signal transmission without a
preamble. Such a transmission will ordinarily not be received by any modem, unless it is recorded by an
explicit RecordBasebandSignalReq at the appropriate time.

16.1.2. Parameters

Agents offering the baseband service support the following parameter:

• carrierFrequency — default carrier frequency for baseband signals (Hz)

93

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/bb/TxBasebandSignalReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/bb/RecordBasebandSignalReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/bb/GetPreambleSignalReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/bb/BasebandSignal.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/bb/RxBasebandSignalNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/bb/BasebandParam.html#carrierFrequency

• basebandRate — default baseband sampling rate for baseband signals (samples/s)

• maxPreambleID — maximum preamble identifier supported

• maxSignalLength — maximum baseband signal length (in samples) for transmission/reception

• signalPowerLevel — signal transmission power level in dB re refPowerLevel (refPowerLevel is specified
in the PHYSICAL service)

16.1.3. Capabilities

Agents may support several optional capabilities:

TIMED_BBTX

Agents advertising this capability are able to transmit signals at specified time (on a best effort basis).
The time is given in the txTime attribute of the TxBasebandSignalReq message.

TIMED_BBREC

Agents advertising this capability are able to record signals at specified time (on a best effort basis). The
time is given in the recTime attribute of the RecordBasebandSignalReq message.

16.2. Baseband and passband signals
Communication systems usually represent signals in a complex baseband representation, as this allows
them to be sampled at a lower sampling rate than real passband signals. Passband signals have to be
sampled at more than twice the highest frequency (Nyquist criterion). Baseband signals need to be
sampled at more than twice the bandwidth. Since the bandwidth is typically much lesser than the
carrier frequency, the baseband representation is usually more economical than the passband
representation.

While the baseband service is aimed at signals represented in the complex baseband representation, it
also supports signals represented as real passband samples. Such signals are identified by setting the fc
(carrier frequency) field of the TxBasebandSignalReq or RxBasebandSignalNtf to 0. Modems offering the
baseband service may optionally support passband signal transmission and recording.

Since Java and Groovy do not support complex numbers natively, the complex baseband signals are
represented by an array of floats with alternate samples from the in-phase (real part) and quadrature
(imaginary part) channels. In languages that support complex numbers (e.g. Python and Julia), the
signals are represented as arrays (or lists) of complex numbers.

If all this seems to be confusing, don’t worry, it’ll become clear as we go through examples shortly.

16.3. Transmitting and recording arbitrary signals
In Section 2.7, you already saw how to transmit and record arbitrary signals. We then used the
convenience functions bbtx and bbrec for simplicity. In this chapter, we will do the same thing by
sending the TxBasebandSignalReq and RecordBasebandSignalReq messages instead. As you’ll see, these
messages provide you greater control, and can also be sent via the UnetSocket API or a fjåge gateway
from external applications.

94

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/bb/BasebandParam.html#basebandRate
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/bb/BasebandParam.html#maxPreambleID
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/bb/BasebandParam.html#maxSignalLength
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/bb/BasebandParam.html#signalPowerLevel
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/bb/BasebandCapability.html#TIMED_BBTX
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/bb/BasebandCapability.html#TIMED_BBREC

Fire up Unet audio to try out the examples here:

$ bin/unet audio
Modem web: http://localhost:8080/

On the shell for the Unet audio SDOAM, check which agents provide the baseband service:

> agentsForService(org.arl.unet.Services.BASEBAND)
[phy]

We can now direct all our requests to the phy agent. Let’s check the baseband parameters of the phy
agent (we omit other parameters here for brevity):

> phy
« Physical layer »

Provides software-defined physical layer communication services (including error detection & correction).

[org.arl.unet.bb.BasebandParam]
 basebandRate ⇒ 12000.0
 carrierFrequency = 12000.0
 maxPreambleID ⇒ 4
 maxSignalLength ⇒ 2147483647
 signalPowerLevel = -42.0

We see that the Unet audio SDOAM operates at a carrier frequency of 12 kHz and a bandband sampling
rate of 12 kSa/s. Let’s create a DC signal of length 12000 complex baseband samples (24000 floats) and
transmit it. A DC signal of length 12000 complex samples with a carrier frequency of 12 kHz is a
sinusoidal 12 kHz signal for 1 second.

> s = [1,0]*12000 ①
[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 <<snip>> 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]
> s.size()
24000
> phy << new TxBasebandSignalReq(signal: s)
AGREE
phy >> TxFrameNtf:INFORM[txTime:11401231]

① In Groovy, we can repeat a list using the "*" operator. The list [1,0] represents a complex number 1+0j.
Repeating it 12000 times gets us a 1 second long DC signal.

You should hear the sound from your computer speaker.


You can generate other frequency signals using the cw() (continuous wave) function
available in the shell. You can also save and load signals from text files using the save
and load commands. For information on all these commands/functions, simply type
help cw, help save or help load.

Unet audio supports transmission of passband signals as well. Let us create a half second 2000 kHz
passband signal and transmit it:

95

> s = cw(2000, 0.5, 0) ①
> s.size()
48000 ②
> phy << new TxBasebandSignalReq(signal: s, fc: 0) ③
AGREE
phy >> TxFrameNtf:INFORM[txTime:414013271]

① The cw() function enables us to create baseband or passband continuous wave signals. The third
parameter is the carrier frequency. Setting that to 0 creates a baseband signal.

② Notice that our signal is 48000 floats for 0.5 seconds. Compare that with the previous DC signal, which
was 24000 floats for 1 second.

③ The fc field is set to 0 to tell phy that the signal is given in passband.

Next, let’s request a recording of 12000 samples (1 second duration):

> phy << new RecordBasebandSignalReq(recLength: 12000)
AGREE
phy >> RxBasebandSignalNtf:INFORM[adc:1 rxTime:11780353 rssi:-79.1 fc:12000.0 fs:12000.0 (12000 baseband
samples)]
> ntf.signal ①
[8.611694E-5, 5.8899976E-5, 1.01 <<snip>> E-6, -9.148392E-6, 3.5340495E-6]

① The ntf variable holds the last received notification, which in this case is the RxBasebandSignalNtf. The
signal field contains the complex baseband recording.

You can also ask for recordings to begin at a specified time:

> t = phy.time + 5000000; println(t); phy << new RecordBasebandSignalReq(recLength: 12000, recTime: t)
855949105
AGREE
phy >> RxBasebandSignalNtf:INFORM[adc:1 rxTime:855949105 rssi:-90.3 fc:12000.0 fs:12000.0 (12000 baseband
samples)]

You’d have noticed the 6 second delay (5 seconds to begin recording, 1 more second to finish the
recording) before the recording notification.

Interestingly, you can also request recordings in the past! Many modems have a short buffer, allowing
recording in the recent past. Go too far in the past and the modem will refuse your request!

> t = phy.time - 5000000; println(t); phy << new RecordBasebandSignalReq(recLength: 12000, recTime: t)
1186471772
AGREE
phy >> RxBasebandSignalNtf:INFORM[adc:1 rxTime:1186471772 rssi:-74.6 fc:12000.0 fs:12000.0 (12000 baseband
samples)]
> t = phy.time - 60000000; println(t); phy << new RecordBasebandSignalReq(recLength: 12000, recTime: t)
1204946438
REFUSE: Bad start time

Specifying a negative recTime is understood by the baseband service provider as a relative time. So we
can simpify our request to record 5 seconds in the past:

96

> phy << new RecordBasebandSignalReq(recLength: 12000, recTime: -5000000)
AGREE
phy >> RxBasebandSignalNtf:INFORM[adc:1 rxTime:1361359020 rssi:-72.9 fc:12000.0 fs:12000.0 (12000 baseband
samples)]

16.4. Transmitting and detecting preambles
Each logical channel (CONTROL, DATA, etc.) is associated with a detection preamble. Detectors in a
modem monitor incoming signals, and trigger when the preamble is detected.

We can transmit a preamble easily:

> phy << new TxBasebandSignalReq(preamble: 1)
AGREE
phy >> TxFrameNtf:INFORM[txTime:5470777099]

Here, we did not specify a signal to transmit, so only the preamble was transmitted. You should have
heard the preamble as a short chirp from your computer speaker. If we had specified a signal, the
preamble would have been followed by the signal.

If you had another Unet audio SDOAM running nearby, it would have heard the preamble and detected a
CONTROL frame. It would have tried to decode the frame, but failed, as we didn’t actually transmit
anything after the preamble. So you’d have seen a RxFrameStartNtf followed by a BadFrameNtf if you had
subscribed to phy topic on that modem.

If you don’t have access to another computer to run Unet audio on, we can easily demonstrate the above
behavior with a single Unet audio SDOAM by simply enabling the full-duplex mode (and hence using the
same computer for transmission and reception simultaneously), as we did in Chapter 15:

> subscribe phy
> phy.fullduplex = true
true
> phy << new TxBasebandSignalReq(preamble:1)
AGREE
phy >> TxFrameStartNtf:INFORM[txTime:5809832016 txDuration:40416]
phy >> TxFrameNtf:INFORM[txTime:5809859766]
phy >> RxFrameStartNtf:INFORM[type:CONTROL rxTime:5809825603 rxDuration:2740000 detector:0.9]
phy >> BadFrameNtf:INFORM[type:CONTROL rxTime:5809825603 rssi:-55.6 (18 bytes)]

Preambles 1 and 2 are used by the CONTROL and DATA channel respectively. It’s better not to mess with
these, but instead use preamble 3, which is left for the user to configure in Unet audio. By default,
detection of preamble 3 is disabled. You can enable it by setting the detection threshold phy[3].threshold
parameter. Let’s try it:

97

> phy[3].threshold = 0.25
0.25
> phy[3].modulation = none
none
> phy << new TxBasebandSignalReq(preamble: 3)
AGREE
phy >> TxFrameStartNtf:INFORM[txTime:6011688016 txDuration:170916]
phy >> TxFrameNtf:INFORM[txTime:6011686599]
phy >> RxFrameStartNtf:INFORM[type:#3 rxTime:6011700270 rxDuration:170500 detector:0.73]

We see the RxFrameStartNtf of type #3 indicating that preamble 3 was detected. Since phy[3] is not
associated with any modulation scheme (we set the modulation parameter to none), the modem did not
generate a BadFrameNtf as it did with preamble 1.


Preambles 1, 2 and 3 are preconfigured on the Unet audio SDOAM to be short signals
with good autocorrelation properties. You can change these, if you wish, by setting the
preamble indexed parameter (type help phy[].preamble for details).

In applications such as sonar or ranging, we may only be interested in the detecting the timing of a
known signal. In that case, the RxFrameStartNtf is sufficient for us. But in some applications, we may
wish to capture the signal once detected. That can be easily achieved in Unet audio by setting the
basebandRx parameter.



The basebandRx and basebandExtra parameters are provided by the Unet audio SDOAM,
and work closely with the baseband service. These are not currently part of the
baseband service specifications, but are under consideration for adoption as part of
the service. Most modems that currently support the baseband service also support
these parameters.

If you enable basebandRx, a recording will be triggered every time the preamble is detected:

> phy[3].basebandRx = true
true
> phy << new TxBasebandSignalReq(preamble: 3)
AGREE
phy >> TxFrameStartNtf:INFORM[txTime:6992613349 txDuration:170916]
phy >> TxFrameNtf:INFORM[txTime:6992598599]
phy >> RxFrameStartNtf:INFORM[type:#3 rxTime:6992616269 rxDuration:170500 detector:0.78]
phy >> RxBasebandSignalNtf:INFORM[adc:1 rxTime:6992616269 rssi:-22.0 preamble:3 fc:12000.0 fs:12000.0
(2400 baseband samples)]

The RxBasebandSignalNtf notified us of the recorded signal (containing just the detected preamble). If we
wanted a longer recording after the preamble, we can ask for that using the basebandExtra parameter,
specifying the length of the recording (in samples) beyond the preamble:

98

> phy[3].basebandExtra = 1200 ①
1200
> phy << new TxBasebandSignalReq(preamble: 3)
AGREE
phy >> TxFrameStartNtf:INFORM[txTime:7143093349 txDuration:170916]
phy >> TxFrameNtf:INFORM[txTime:7143062599]
phy >> RxFrameStartNtf:INFORM[type:#3 rxTime:7143081603 rxDuration:1170500 detector:0.78]
phy >> RxBasebandSignalNtf:INFORM[adc:1 rxTime:7143081603 rssi:-36.7 preamble:3 fc:12000.0 fs:12000.0
(3600 baseband samples)]

① We are requesting 100 ms recording beyond the end of the preamble.

You can see that the recording is much longer now.



If you cross-correlate this recording with the preamble you transmitted, you’d get an
estimate of the impulse response of the channel between your computer speaker and
microphone! You can easily obtain the complex baseband representation of preamble
#3 that you have been transmitting (phy[3].preamble.signal), if you wanted to try doing
this.

16.5. Baseband signal monitor
During the development of signal processing algorithms, one often wants to simply record received
signals in the modem for postprocessing. For this, you could write a script to listen for
RxBasebandSignalNtf messages from phy agent’s topic, and store them in a file. Since this requirement is
common, UnetStack already provides an agent which does exactly this. The agent is called
BasebandSignalMonitor or bbmon for short.

The bbmon agent is already loaded when you run Unet audio. However, by default, it is disabled. It’s easy
to enable it:

> bbmon.enable = true
true

Now, every RxBasebandSignalNtf that is sent to phy agent’s topic will be recorded in a signal-0.txt file in
the logs folder.

99

> logs ①
signals-0.txt [0 bytes] ②
results.txt [39 bytes]
phy-log-0.txt [687 bytes]
log-0.txt [4 kB]
> phy << new TxBasebandSignalReq(preamble: 3) ③
AGREE
phy >> TxFrameStartNtf:INFORM[txTime:102528016 txDuration:170916]
phy >> TxFrameNtf:INFORM[txTime:102513266]
phy >> RxFrameStartNtf:INFORM[type:#3 rxTime:102531520 rxDuration:270500 detector:0.74]
phy >> RxBasebandSignalNtf:INFORM[adc:1 rxTime:102531520 rssi:-23.6 preamble:3 fc:12000.0 fs:12000.0 (3246
baseband samples)]
> logs
signals-0.txt [34 kB] ④
results.txt [39 bytes]
phy-log-0.txt [687 bytes]
log-0.txt [5 kB]

① Check the logs folder.

② We have a signals-0.txt file with no data.

③ Transmit preamble #3. This will trigger a recording, based on the phy[3] configuration from the
previous section.

④ Now the signals-0.txt file has grown to 34 kB. It contains the signal that was just recorded.

As you record more signals, they are appended to the same file (with delineating metadata for each
signal). If you restart Unet audio, this file will be renumbered to signals-1.txt, as the logs are rotated.


The name of the signals file and number of files kept through log rotation is configured
when the bbmon agent is loaded. This happens in the etc/setup.groovy file in your Unet
audio installation, and you can change it, if you like.

The signals file stores the signals in a base64 encoded format. The Python package arlpy.unet allows you
to read this file and work with the signals in it:

100

$ pip install arlpy ①
$ ipython
Python 3.6.8 |Anaconda custom (64-bit)| (default, Dec 29 2018, 19:04:46)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.2.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from arlpy import unet
In [2]: s = unet.get_signals('logs/signals-0.txt')
In [3]: s ②
Out[3]:
 time rxtime adc channels fc ... len preamble rssi filename lno
0 1567961114848 75224853 1 1 0 ... 3246 3 -23.6 logs/signals-0.txt 1

[1 rows x 12 columns]

In [4]: x = unet.get_signal(s, 0)
In [5]: x.shape ③
Out[5]: (3246,)
In [6]: x
Out[6]:
array([9.50995535e-02-3.77136953e-02j, 1.30487725e-01-1.90211199e-02j,
 1.27376720e-01+1.91459619e-02j, ...,
 8.61445224e-05+2.21590763e-05j, -2.69901575e-05-3.34111392e-05j,
 3.39479702e-05-1.82653162e-06j])

① Install the arlpy pacakge. You need to do this only if you don’t already have it installed. The output of
this command is omitted here.

② s is now a pandas table with an index of all signals available in signals-0.txt.

③ x is now signal #0 (first signal) from the signals-0.txt file.

16.6. Transmitting and receiving waveforms directly from
Python
In the previous section, we showed you how to record signals for postprocessing. This is great if you
postprocessing is what you desire, but sometimes it is important to access the functionality in real time
from Python. This is very useful while debugging new signal processing algorithms, since tools such as
Jupyter notebooks and libraries such as numpy, scipy, pandas, arlpy, and many others have made Python
the preferred platform for a lot of scientific computation.

Let’s try it!

You had already installed the Python package unetpy in Section 2.5. We’ll be using it now, so in case you
don’t have it installed, now is a good time to install it. Start a Jupyter new notebook with Python 3 and
connect to your Unet audio instance:

101

In[1]: from unetpy import *
 import arlpy.plot as plt

In[2]: # connect to the Unet audio SDOAM
 sock = UnetSocket('localhost', 1100)
 gw = sock.getGateway()

In[3]: # lookup the agent providing baseband service
 bb = gw.agentForService(Services.BASEBAND)
 bb.name
Out[3]: 'phy'

In[4]: # transmit preamble 3 -- you should be able to hear it
 bb << TxBasebandSignalReq(preamble=3)
Out[4]: AGREE

In[5]: # discard old notifications to get ready for a recording
 gw.flush()

In[6]: # request a recording
 bb << RecordBasebandSignalReq()
Out[6]: AGREE

In[7]: # obtain the recording notification and check that it's of the correct type
 ntf = gw.receive(timeout=5000)
 ntf
Out[7]: RxBasebandSignalNtf:INFORM[rxTime:203329687 rssi:-68.847565 adc:1 fc:12000.0 fs:12000.0 channels
:1 preamble:0 (65536 samples)]

In[8]: # close the connection
 sock.close()

In[9]: len(ntf.signal)
Out[9]: 65536

In[10]: # plot the first 10000 baseband samples (real/in-phase components only)
 plt.plot(ntf.signal[:10000].real, fs=ntf.fs)
Out[10]:

102

Of course you could do the same thing with Julia or other languages, if you wish, with obvious minor
changes to the syntax!

103

Chapter 17. Ranging and synchronization
org.arl.unet.Services.RANGING

It is common to use underwater acoustic modems for range estimation, as the travel time of acoustic
signals can easily be measured. In Section 2.3, we saw that we can use the range command to estimate
range between nodes. This command uses the RANGING service described below.

Ranging is closely related to time synchronization, since travel time measurement between two nodes
requires some sort of synchronization between the nodes. If the nodes are synchronized, one-way travel
time (OWTT) can be directly measured and used to estimate range. If the nodes are not synchronized,
two-way travel time (TWTT) can be used to measure range and synchronize the nodes simultaneously.
The RANGING service supports both modes of ranging, and manages synchronization information
between nodes.

The RANGING service also supports ranging to commercial-off-the-shelf (COTS) transponders.

17.1. Overview
The RANGING service provides messages and parameters to support OWTT and TWTT ranging to other
Unet nodes or COTS transponders, and to manage synchronization information between the nodes.

17.1.1. Messages

The following messages are defined by the RANGING service:

• RangeReq ⇒ AGREE / REFUSE / FAILURE — measure range to peer node via OWTT or TWTT

• BeaconReq ⇒ AGREE / REFUSE / FAILURE — transmit beacon message for OWTT

• RangeNtf — sent when a range to another node is measured, typically in response to RangeReq on
current node (sent to requester), or BeaconReq on peer node (sent to agent’s topic)

• InterrogationNtf — sent on agent’s topic when a ranging interrogration frame is recevied from peer,
before a response is sent back

• RespondReq ⇒ AGREE / REFUSE — if automatic response is disabled, request to respond to interrogation
frame (with optional payload)

The use of these messages will become clearer through examples below.

17.1.2. Parameters

The RANGING service does not define any parameters, but the default RANGING agent provides several
useful parameters to control its behavior, and to provide status information.

17.2. Ranging agent

17.2.1. Parameters

A few parameters control the behavior of the default ranging agent:

104

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangeReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/BeaconReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangeNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/InterrogationNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RespondReq.html

• phy — physical agent to use for ranging

• mac — MAC agent to use for channel reservations

• respond — true if the agent should automatically respond to interrogation frames from peers, false if
it should generate a InterrogationNtf and wait for another agent to request a response using
RespondReq

In addition, the following parameters provide defaults for ranging:

• channel — channel (DATA/CONTROL) to use for ranging

• maxRange — maximum expected range to peer (m)

• ipreamble — interrogation preamble to transmit

• rpreamble — response preamble to expect after interrogation

• rsignal — response baseband signal to expect after interrogation

• rdelay — response delay (seconds)

• threshold — threshold (0-1) for signal detection, when response is specified as an arbitrary acoustic
signal

17.2.2. Indexed parameters

Some parameters can be additionally specified (or overridden) on a per-link basis, using indexed
parameters (indexed by the node address of the peer node on the link):

• address — peer node address

• channel — channel (DATA/CONTROL) to use for ranging

• maxRange — maximum expected range to peer (m)

• ipreamble — interrogation preamble to transmit

• isignal — interrogation baseband signal to transmit

• rpreamble — response preamble to expect after interrogation

• rsignal — response baseband signal to expect after interrogation

• rdelay — response delay (seconds)

• data — payload data to automatically include in response frame

• threshold — threshold (0-1) for signal detection, when response is specified as an arbitrary acoustic
signal

• lifetime — synchronization validity lifetime (seconds)

The lifetime of syncrhonization information should be set based on the expected drift of modem clocks.
Lifetime is defined as the time for the expected clock drift (scaled by speed of sound in water) to exceed
the required range estimation accuracy. If a network uses modems with low-drift clocks (such as oven-
controlled oscillators), the lifetime can be quite long (hours to days). Without low-drift clocks, reasonable
lifetimes may only be in the order of several minutes to tens of minutes.

105

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#phy
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#mac
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#respond
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#channel
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#maxRange
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#ipreamble
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#rpreamble
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#rsignal
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#rdelay
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#threshold
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingNodeParam.html#address
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#channel
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingNodeParam.html#maxRange
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingNodeParam.html#ipreamble
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingNodeParam.html#isignal
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingNodeParam.html#rpreamble
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingNodeParam.html#rsignal
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingNodeParam.html#rdelay
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingNodeParam.html#data
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#threshold
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#lifetime

Why do clocks drift?

Most electronics use crystal oscillators for timekeeping. A crystal oscillator is an electronic circuit
that uses the mechanical resonance of a vibrating piezoelectric crystal to create an electrical
signal with a desired frequency. The resonant frequency depends on size, shape, elasticity, and the
speed of sound in the material. Due to manufacturing tolerences, these properties are not exactly
identical across manufactured crystals, and so different crystals designed for the same nominal
frequency produce slightly different frequency signals. Furthermore, as the operating
temperature of the crystal changes, its material properties change, and so does its resonant
frequency. These differences in frequency are tiny, but over long periods of time, the differences
accumulate and cause the clocks to drift.

For applications where drift is undesirable, temperature-compensated crystal oscillators (TCXO) or
oven-controlled crystal oscillators (OCXO) may be used. TCXOs try to adjust their oscillation
frequency electronically, to compensate for temperature changes. OCXOs, on the other hand, try to
maintain a constant temperature with a mini-oven around the crystal. For very sensitive
applications, atomic clocks may be used for even lower drift. But given long enough time, even the
most precise of these oscillators will accumulate tiny errors and the clocks will eventually drift!

A few more read-only per-link parameters provide synchronization information about the link, when
available:

• sync — availability of synchronization information on link

• lastSync — time of last synchronization (epoch milliseconds)

• offset — clock offset between current node and peer node (microseconds)

17.3. Examples
In order to understand how the RANGING service provides OWTT and TWTT ranging, it is instructive to
try a few examples using the Netiquette 3-node network simulation (bin/unet samples/netq-

network.groovy). Start the simulation, and connect to node A:

106

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#sync
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#lastSync
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/localization/RangingParam.html#offset

> agentsForService(org.arl.unet.Services.RANGING) ①
[ranging]
> ranging
« Range estimator »

Provides time synchronization and range estimation services.

[org.arl.unet.localization.RangingParam]
 channel = 2 ②
 ipreamble = 0
 mac = mac
 maxRange = 3000.0
 phy = phy
 rdelay = 1.95
 respond = true
 rpreamble = 0
 rsignal = []
 threshold = 0.3

> range host('B') ③
371.09
> ranging << new RangeReq(to: host('B')) ④
AGREE
ranging >> RangeNtf:INFORM[from:232 to:31 range:371.08856 offset:-1523892589 rxTime:1860655032]
> ntf.range
371.09

① We see that the ranging agent provides the RANGING service on the node.

② The DATA channel (channel 2) is being used for ranging.

③ The range command provides us the range to node B of about 371 m.

④ The range command is implemented by sending a RangeReq to the ranging agent. We directly send that
message. As expected, it leads to a RangeNtf message that gives us the same range estimate as the
range command. The RangeNtf also provides us time synchronization information between the nodes
(as time difference between the nodes, or offset, in microseconds).

17.3.1. Two-way travel time ranging

The range measurement above used TWTT ranging. While node B participated in the range
measurement by responding to node A’s request for a two-way frame exchange, this is all done quietly
and we see nothing on node B’s shell. To see what is happening on both nodes, subscribe to the phy and
ranging agent’s topics on both nodes. Then repeat the RangeReq on node A:

Node A:

> subscribe phy
> subscribe ranging
> ranging << new RangeReq(to: host('B'))
AGREE
phy >> TxFrameStartNtf:INFORM[type:DATA txTime:2048652195 txDuration:700]
phy >> RxFrameStartNtf:INFORM[type:DATA rxTime:2051086032]
phy >> RxFrameNtf:INFORM[type:DATA from:31 to:232 protocol:1 rxTime:2051086032 txTime:526951606 (7 bytes)]
ranging >> RangeNtf:INFORM[from:232 to:31 range:371.08856 offset:-1523892589 rxTime:2051086032]

We see that node A transmitted a DATA frame. It then received a timestamped DATA frame back from

107

node B. The timing information in both frames was used to compute the range and time offset between
the nodes. This was sent back to us as a RangeNtf. This is the frame exchange that implements TWTT
ranging.

If we look at node B’s shell at the same time:

Node B:

> subscribe phy
> subscribe ranging
phy >> RxFrameStartNtf:INFORM[type:DATA rxTime:525001443]
phy >> RxFrameNtf:INFORM[type:DATA from:232 to:31 protocol:1 rxTime:525001443 (1 byte)]
ranging >> InterrogationNtf:INFORM[type:DATA from:232 to:31 rxTime:525001443 responded:true]
phy >> TxFrameStartNtf:INFORM[type:DATA txTime:526951606 txDuration:700]

We see that node B received a DATA frame and responded back with a DATA frame. It generated a
InterrogationNtf with responded set to true to indicate that it received an interrogation and responded to
it. This is because ranging.respond = true, as seen above. If ranging.respond was set to false, the agent
would have simply generated the InterrogationNtf without responding. This allows another agent to
study the intorrogation, and optionally send back payload data as part of the response, using the
RespondReq message.

17.3.2. Synchronization

We can ask node A for the synchronization information it has gathered from previous ranging
exchanges:

Node A:

> ranging[host('B')]
« RANGING »

[org.arl.unet.localization.RangingNodeParam]
 address ⇒ 31
 channel = 2
 data = []
 ipreamble = 0
 isignal = []
 lastSync ⇒ 1586070856974
 lifetime = 0
 maxRange = 3000.0
 offset = -1523892589
 rdelay = 1.95
 rpreamble = 0
 rsignal = []
 sync ⇒ false
 threshold = 0.3

We see that it has stored the time offset to node B, along with the information on when the
synchronization information was last updated. However, you’ll find that the sync flag is false, since the
lifetime parameter was set to 0, and hence the synchronization is considered expired. If you ask for
synchronization information on node B, you’ll find that it does not have any:

108

Node B:

> ranging[host('A')]
« RANGING »

[org.arl.unet.localization.RangingNodeParam]
 address ⇒ 232
 channel = 2
 data = []
 ipreamble = 0
 isignal = []
 lastSync ⇒ 0
 lifetime = 0
 maxRange = 3000.0
 offset = 0
 rdelay = 1.95
 rpreamble = 0
 rsignal = []
 sync ⇒ false
 threshold = 0.3

Without synchronization information, OWTT ranging cannot be performed.

If we have low-drift clocks on all our nodes, we can set the lifetime parameter for all the links to a
larger value. Let’s do that on node A for link A-B. Also unsubscribe from phy to avoid too much clutter:

Nodes A:

> ranging[host('B')].lifetime = 3600
3600
> unsubscribe phy

Now check the synchronization information for link A-B again:

Node A:

> ranging[host('B')]
« RANGING »

[org.arl.unet.localization.RangingNodeParam]
 address ⇒ 31
 channel = 2
 data = []
 ipreamble = 0
 isignal = []
 lastSync ⇒ 1586070856974
 lifetime = 0
 maxRange = 3000.0
 offset = -1523892589
 rdelay = 1.95
 rpreamble = 0
 rsignal = []
 sync ⇒ true ①
 threshold = 0.3

① We see that sync is now true, indicating that we have valid synchronization information on this link.

109

17.3.3. One-way travel time ranging

Now, let’s transmit a ranging beacon from node B:

Node B

> beacon // equivalent to: ranging << new BeaconReq()
AGREE

On node A, we see RangeNtf from the OWTT ranging:

Node A

ranging >> RangeNtf:INFORM[from:232 to:31 range:371.08856 rxTime:1039174911]



Any timestamped frame transmission from node B will generate RangeNtf on node A
now. This can be used to piggyback data (e.g. 42) along with the beacon: phy << new
TxFrameReq(timestamped: true, data: [42]). This will generate a RxFrameNtf on node A,
if you subscribe to phy, in addition to the RangeNtf messages. This works with both
CONTROL and DATA frames.

17.3.4. Ranging to COTS transponders

The ranging agent provides a lot of flexibility for configuration. To see the power of this, let’s consider a
scenario in which we want to use a UnetStack-based modem to measure range to a COTS transponder
that is configured to respond to a 22 kHz 2 ms long pulse with a 30 kHz 2 ms pulse, after a delay of 30 ms.



The example below is meant to run on a UnetStack-based modem. If you don’t have
one, you can still try out the example on Unet audio and hear the interrogation pulse.
However, because the default operating band of Unet audio SDOAM is 6-18 kHz, you’ll
need to pick interrogation and response frequencies in this band. Also, you may want
to make the interrogation pulse longer (say 200 ms), so you can hear it when you try
ranging with this in air.

First, we welcome the COTS transponder into our network as a Unet guest node by assigning it a name
and address. Let’s call it node T with address host('T') = 152. On our modem node, we set up details of
the link to the transponder:

110

> T = host('T')
152
> ranging[T].isignal = cw(22.kHz, 2.ms);
> ranging[T].rsignal = cw(30.kHz, 2.ms);
> ranging[T].rdelay = 30.ms;
> ranging
« RANGING »

[org.arl.unet.localization.RangingNodeParam]
 address ⇒ 152
 channel = 2
 data = []
 ipreamble = 0
 isignal = [0.0, -0.0, 0.8660254, -0.5, 0.5 ... 0.5, 0.8660254, 0.8660254, 0.5]
 lastSync ⇒ 0
 lifetime = 0
 maxRange = 3000.0
 offset = 0
 rdelay = 0.03
 rpreamble = 0
 rsignal = [0.0, 0.0, 6.123234E-17, 1.0, -1 ... 6022E-15, -3.1847007E-15, -1.0]
 sync ⇒ false
 threshold = 0.3

Now, we are all setup. To range to the transponder, all we need to do is:

> range T
235.7

Assuming you have the UnetStack-based modem in the water, along with the COTS transponder, you’ll
get a range estimate back after just a short delay.

We have hardly scratched the surface of what the RANGING service and the ranging agent is capable of.
There’s a lot you can do with it!


For an example of how to build a simple long-baseline (LBL) navigation system with
multiple nodes connected over wormholes amd ranging to a mobile node, see Chapter
11.

111

Chapter 18. Node information
org.arl.unet.Services.NODE_INFO

The NODE_INFO service provides a single place to collate node-related information that is commonly
needed by many agents. It is a special service, in the sense that each node must be configured to have
one and only one agent providing this service.

18.1. Overview
An agent implementing the NODE_INFO service not only exposes a set of parameters, as described in this
section, but also provides some special handling for specific parameters.

18.1.1. Parameters

An agent offering the NODE_INFO service supports several parameters:

• nodeName — node name

• address — node address

• addressSize — address size in bits (valid values are 8 or 16)

• time — node time (read-only)

• canForward — true if the node will forward datagrams to other nodes (routing)

• origin — origin as (latitude, longitude)

• location — location as (x, y, z) in meters if origin set, otherwise (latitude, longitude, z)

• mobility — true if the node is mobile, false if it is fixed

• speed — speed in m/s, if mobile node

• heading — heading in degrees, 0 is North, measured clockwise

• pitch — pitch angle in degrees, 0 is level, positive is nose down

• roll — roll angle in degrees, 0 is level, positive is rolling starboard

• turnRate — turn rate in degrees/s, measured clockwise, if mobile node

• diveRate — dive rate in m/s, if mobile node

Any changes to parameters nodeName, address, addressSize, origin or location are published as
ParamChangeNtf to the agent’s topic (in addition to the PARAMCHANGE topic that all parameter changes are
automatically published to — see Chapter 25). This is to facilitate monitoring of changes to these
important parameters by other agents, simply by subscribing to the NODE_INFO service provider’s topic.

Additionally, if time stability or location accuracy information is available, the following parameters are
populated:

• timeStability — time stability in ppm

• locationAccuracy — location accuracy as (x, y, z) in meters

112

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#nodeName
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#address
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#addressSize
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#time
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#canForward
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#origin
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#location
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#mobility
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#speed
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#heading
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#pitch
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#roll
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#turnRate
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#diveRate
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#timeStability
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/nodeinfo/NodeInfoParam.html#locationAccuracy

18.1.2. Notes

• See Section 4.1 for a discussion on nodeName, address and addressSize.

• See Section 5.6 for a discussion on origin, location and coordinate systems.

• If node mobility is enabled, the agent may automatically update location based on motion
parameters such as speed, heading, etc.

18.2. Example
If you start the mission2013 network simulation (bin/unet samples/mission2013-network.groovy), connect
to node 21’s shell and type node, you’ll see the NODE_INFO parameters for the node in this network:

> node
« Node information »

Manages and maintains node information and attributes.

[org.arl.unet.nodeinfo.NodeInfoParam]
 address = 232
 addressSize = 8
 canForward = true
 diveRate = 0
 heading = 0
 location = [0.0, 0.0, -15.0]
 mobility = false
 nodeName = A
 origin = [NaN, NaN]
 pitch = 0
 roll = 0
 speed = 0
 time ⇒ Thu Apr 08 20:43:40 SGT 2021
 turnRate = 0

113

Chapter 19. Address resolution
org.arl.unet.Services.ADDRESS_RESOLUTION

19.1. Overview
An ADDRESS_RESOLUTION service provider is responsible for address allocation and resolution. The
size of the address space is detemined by the addressSize parameter of the NODE_INFO service (Chapter
18).

19.1.1. Messages

Agents supporting this service honor the following requests:

• AddressAllocReq ⇒ AddressAllocRsp / REFUSE / FAILURE — request for allocation of address to node

• AddressResolutionReq ⇒ AddressResolutionRsp / REFUSE / FAILURE — resolve node name to address

19.2. Usage and notes
Shell usage of this service via the host command is described in Section 4.1. In this section, we show
examples of how address allocation and address resolution can be implemented directly by sending
messages.

Address allocation is typically required at startup, and usually initiated by the agent providing the
NODE_INFO service to populate the address parameter of that service. To ask the ADDRESS_RESOLUTION
service provider to allocate an address, an agent sends it a AddressAllocReq. The allocation may depend
on the node name, and so the request must contain the node name.

We can start the 2-node network, and manually test this on the shell of node A:

> a = agentForService(org.arl.unet.Services.ADDRESS_RESOLUTION);
> a << new AddressAllocReq(name: 'A')
AddressAllocRsp:INFORM[address:232]

Address resolution is performed via the AddressResolutionReq message. The host command sends this
message on your behalf, and shows you the response:

> a << new AddressResolutionReq(name: 'A')
AddressResolutionRsp:INFORM[address:232 name:A]
> ans.address
232
> host('A')
232

While the address allocation and resolution processes may seem very similar, there is a conceptual
difference between the two. Address allocation is performed for a new node without an address. The
address allocation process associates it with an address. Address resolution is performed to find the
address that was assigned to a node.

114

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/addr/AddressAllocReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/addr/AddressAllocRsp.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/addr/AddressResolutionReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/addr/AddressResolutionRsp.html



The default ADDRESS_RESOLUTION service provider uses a hashing function to map
node names to addresses. This enables it to allocate and resolve addresses without
generating network traffic, as the hashing function generates the same address for a
given name on each node. Because the hashing maps a large name space to a small
address space, there is always the chance that two names map to the same address; we
require that the network architect check this manually, and assign node names such
that there are no address conflicts.


Network designers and protocol developers should not rely on the
ADDRESS_RESOLUTION service provider being based on a hashing function for correct
operation of the network.

115

Chapter 20. Medium access control
org.arl.unet.Services.MAC

20.1. Overview
Agents offering the medium access control (MAC) service advise other agents on when they may be
permitted to make transmissions, in an effort to reduce collisions and improve network throughput.

MAC protocols that use PDUs for channel reservation may support piggybacking of client data in the
PDU. If such support is available, it is advertised using a non-zero reservationPayloadSize parameter. A
ReservationReq should provide the payload data to be sent to a peer node (as part of RTS or equivalent
PDU) to whom the reservation is made. If that node wishes to send payload data back (as part of CTS or
equivalent PDU), it may send a ReservationAcceptReq in response to a ReservationStatusNtf to provide its
payload data.


Protocol data units (PDUs) are protocol-specific datagrams exchanged by nodes in a
network. MAC protocls that use a handshake often use three basic type of
PDUs — request to send (RTS), clear to send (CTS) and acknowledgement (ACK).

What is a payload?

We talk about MAC service’s support for payloads quite a bit in this chapter, but what exactly is a
payload?

A payload is a few bytes of data that can be carried by a MAC PDU on behalf of the user or another
agent, without consuming significant additional resources (time or energy). It is essentially an
optimization for a low bandwidth network, reducing the need for additional datagrams to be
transmitted to convey a few bytes of side information from other agents. For example, a LINK
agent might send power control information as payload during a CTS-RTS exchange to optimize
transmission power. Or it might send channel state information to aid in adaptive modulation to
optimize link throughput.

20.1.1. Messages

Agents supporting the MAC service provide messages to request, grant and cancel reservations:

• ReservationReq ⇒ ReservationRsp / REFUSE — request a reservation

• ReservationCancelReq ⇒ AGREE / REFUSE — cancel a reservation

• ReservationAcceptReq ⇒ AGREE / REFUSE — request piggybacking of payload in a reservation PDU,
typically sent by a client on receiving a ReservationStatusNtf[status: REQUEST] notification

• TxAckReq ⇒ AGREE / REFUSE — request transmission of acknowledgement payload

• ReservationStatusNtf — sent to requestor or agent’s topic when a reservation-related events occur

While we use the term reservation for all MAC agents, it is important to understand that MAC agents are
typically unable to guarantee that no other nodes transmit during the reservation period. The

116

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/ReservationReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/ReservationRsp.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/ReservationCancelReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/ReservationAcceptReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/TxAckReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/ReservationStatusNtf.html

reservation is on a best-effort basis, and the probability of collision is dependent on the underlying MAC
protocol in use. For example, a handshake-based MAC (using RTS/CTS) might be able to inform other
nodes' MAC agents about a reservation, while carrier-sensing MAC agents may rely on hearing the
transmission from another node to backoff reservations at their node. A MAC agent must, however,
guarantee that no two agents on the same node are granted reservation at the same time.

Agents providing the MAC service are able to queue reservation requests from multiple agents, and
grant reservations in order of arrival of request (or priority, or some other measure of fairness). It is,
however, recommended that one agent only make one request to the MAC at a time, and submit its next
request after the previous reservation is completed. An agent providing the MAC service may choose to
refuse reservation requests from an agent that has pending reservation requests already in the queue.

20.1.2. Parameters

Agents offering the MAC service support the following parameters:

• channelBusy — true if channel is busy, false otherwise

• reservationPayloadSize — maximum size of payload (bytes) that can be piggybacked in a reservation
PDU

• ackPayloadSize — maximum size of acknowledgement (bytes) that can be included in an ACK PDU

• maxReservationDuration — maximum duration of reservation in seconds

• recommendedReservationDuration — recommended duration of reservation in seconds (null, if
unspecified)

A MAC agent advertises the maximum supported reservation duration (maxReservationDuration), and
must honor reservation requests for up to this duration. However, the network performance might
suffer if all agents use very long reservations. To address this, the MAC agent also advertises a shorter
recommendation for reservation duration (recommendedReservationDuration). Most agents should request
reservations of this duration (or shorter) unless unavoidable.

20.1.3. Capabilities

Agents may support several optional capabilities:

RELIABILITY

An agent advertising this capability must be able to send acknowlegements as part of the MAC protocol.
The agent must support the TxAckReq request to provide acknowledgement payload to be transmitted to
the peer node at the end of the reservation. On reception, this payload should be delivered in the
ReservationStatusNtf[status: END] on the peer node.

PRIORITY

Agents advertising this capability must honor priority settings in the reservation request.

TTL

Agents advertising this capability must honor time-to-live settings in the reservation request.

117

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/MacParam.html#channelBusy
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/MacParam.html#reservationPayloadSize
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/MacParam.html#ackPayloadSize
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/MacParam.html#maxReservationDuration
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/MacParam.html#recommendedReservationDuration
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/MacCapability.html#RELIABILITY
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/MacCapability.html#PRIORITY
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/MacCapability.html#TTL

TIMED_RESERVATION

Agents advertising this capability must support scheduling of reservations in the future, through the use
of the startTime attribute of the ReservationReq.

20.2. Basic MAC functionality
MAC agents advise other agents that wish to transmit (we shall call them clients) on when they may do
so. MAC agents make channel reservations on behalf of their clients, as necessary. Some MAC protocols
such as Aloha and TDMA may not require explicit handshake for reservation, while others such as
MACA and FAMA may involve control packet exchanges between peer MAC agents on various nodes. In
either case, a typical client with data to transmit starts by asking the prevailing MAC agent for a channel
reservation:

// client wishes to transmit data to "destination" for specified "duration"
def mac = agentForService(Services.MAC)
if (mac) {
 def req = new ReservationReq(recipient: mac, to: destination, duration: duration) ①
 def rsp = request(req)
 if (rsp && rsp.performative == Performative.AGREE) {
 def ntf = receive(ReservationStatusNtf, timeout) ②
 if (ntf && ntf.inReplyTo == req.messageID && ntf.status == ReservationStatus.START) {
 // :
 // transmit data for requested duration
 // :
 }
 }
}

① Send a channel reservation request.

② Wait for a channel reservation notification.

In the above sample code, error handling has been omitted for simplicity. In reality, you would want to
have else clauses to handle reservation failures. The MAC agent not only sends a
ReservationStatusNtf[status: START] notification, but also a ReservationStatusNtf[status: END]

notification at the end of the reservation duration. The sample code above ignores this notification, but a
well-behaved client should ensure that the transmission does not exceed the requested duration.

20.3. Working with MAC payloads
Messages such as ReservationReq and ReservationStatusNtf may carry payloads, when the MAC protocol
supports them. When payloads are supported, additional messages such as ReservationAcceptReq,
TxAckReq and TxAckNtf are available for clients to provide payloads to the MAC service provider to
piggyback on the MAC PDUs. A typical exchange is illustrated in Figure 9.

118

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/mac/MacCapability.html#TIMED_RESERVATION

Figure 9. Typical message exchange for MAC with payloads and ACK.

For a MAC reservation initiated by node A with node B, we elaborate on the steps for a full reservation
lifecycle with payloads:

1. On node A, the client (agent) sends a ReservationReq to the MAC (agent), with an optional payload.
The MAC accepts the request.

2. MAC on node A sends an RTS PDU with the payload to the MAC on node B.

3. MAC on node B generates a ReservationStatusNtf[status: REQUEST] message and publishes it on its
topic. A client subscribing to this topic receives the notification.

4. If the client on node B wants to send back some payload with the CTS PDU, it immediately sends a
ReservationAcceptReq to the MAC, with the payload.

5. The MAC accepts the request and responds to node A’s MAC with a clients PDU containing the
payload.

6. The payload is delivered to the client on node A as part of a ReservationStatusNtf[status: START]
message marking the start of the reservation time.

119

7. During the reservation, the two nodes exchange data as they wish.

8. If the client on node B wishes to provide an acknowledgment (with a payload), it sends a TxAckReq
message before the reservation duration ends, and the MAC on node B accepts.

9. The MAC on node B sends an ACK PDU with the payload to the MAC on node A. The ACK PDU marks
the end of the channel reservation. The MAC delivers this acknowledgment payload to the client on
node A as a part of the ReservationStatusNtf[status: END] message.

10. If node B does not send an ACK PDU, when the channel reservation ends, the MAC on node A sends a
ReservationStatusNtf[status: END] message to its client.

20.4. Examples
Sample MAC implementations are illustrated in Chapter 29.

120

Chapter 21. Single-hop links
org.arl.unet.Services.LINK

21.1. Overview
Agents offering the LINK service provide single-hop communication.

Single-hop here refers to a single hop in the Unet sense. For example, a link may be provided over
wireless RF network that has multiple physical hops (e.g. using UDP/IP). However, as long as the link
does not pass through multiple Unet nodes, it is considered a logically single-hop link.

All agents supporting the LINK service must also support the DATAGRAM service (Chapter 14).

It is recommended that agents offering the LINK service provide reliability, when requested. Agents that
are able to provide reliability, do so by advertising the DATAGRAM service capability RELIABILITY.

LINK service providers using the PHYSICAL service should also consult the MAC service to determine
when they should transmit.

In a typical Unet, gateway nodes may have several LINK service providers, with the ROUTING service
(Section 22.2) provider forwarding datagrams across links.

21.1.1. Messages

The LINK service defines only one optional message, used only by agents advertising the LINK_STATUS
capability.

• LinkStatusNtf — link up/down or quality notification

21.1.2. Parameters

Agents offering the LINK service may support the following parameter:

• dataRate — nominal data rate of link in bps (0 if unknown)

21.1.3. Capabilities

Agents may support several optional capability:

• LINK_STATUS*

Agents advertising this capability will send LinkStatusNtf messages on its topic, when a link becomes
active, is lost, or has significant change in quality.

21.2. ReliableLink
Start the 2-node network and connect to node A:

121

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/link/LinkStatusNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/link/LinkParam.html#dataRate
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/link/LinkCapability.html#LINK_STATUS

> agentsForService org.arl.unet.Services.LINK
[uwlink]

> uwlink
« Reliable acoustic link »

Link protocol with support for reliability and fragementation-reassembly.

[org.arl.unet.DatagramParam]
 MTU ⇒ 848
 RTU ⇒ 848

[org.arl.unet.link.LinkParam]
 dataRate ⇒ 731.4286

[org.arl.unet.link.ReliableLinkParam]
 acks = 2
 controlChannel = 1
 dataChannel = 2
 mac = mac
 maxPropagationDelay = 2.5
 maxRetries = 2
 phy = phy
 reservationGuardTime = 0.5

> uwlink << new CapabilityReq()
CapabilityListRsp:INFORM[FRAGMENTATION,RELIABILITY,LINK_STATUS]

We see that in the 2-node network simulation, the only agent that provides the link service is the uwlink
agent of type ReliableLink. This agent fragments large datagrams, and transmits a batch of frames at a
time, before waiting for an acknowledgement from the peer node. Unacknowledged frames are
retransmitted until all frames are delivered, or there are too many retries. Once all frames are received,
the peer node’s uwlink agent reassembles the datagram and delivers it. The agent also provides link
status notifications.


ReliableLink provides the LINK service for all underwater links in Unet basic stack that
ships as part of the community edition.

With the default PHYSICAL service settings, the nominal data rate provided by this link is 731 bps, and
that only 848 or less bytes may be transferred per datagram. The actual data rate may differ, depending
on the size of the datagram, reliability settings, and the channel conditions.

We also see that ReliableLink provides a set of configurable parameters:

acks

Number of acknowledgements to use for reliable data transfer. Since a lost acknowledgement frame
results in retransmission of the entire batch of frames, multiple acknowledgements are used to
improve the robustness of the acknowledgement frame.

controlChannel

Frame type to use for control information. This is usually the CONTROL frame type.

dataChannel

Frame type to use for data frames. This is usually the DATA frame type.

122

mac

MAC service provider to use for reserving the channel. This is automatically discovered during
startup. Setting this to null disables MAC reservation.

maxPropagationDelay

Maximum expected propagation delay for the link (in seconds). This should be set based on the
expected single-hop communication range, and the sound speed (in case of acoustic links). This
parameter is used to determine expected round-trip time for setting timeouts for acknowledgement
frames.

maxRetries

Maximum number of retries per frame. Once the maximum number of retries is exceeded, a
datagram transfer is deemed to have failed.

phy

PHYSICAL service provider for data transmission. This is automatically discovered during startup,
but may be configured manually on gateway nodes with multiple PHYSICAL service providers.

reservationGuardTime

Guard time (in seconds) that is included in a MAC reservation of the channel. The guard time allows
for small timing variability in transmission and small delays in response from peer node.

21.3. ECLink


In the Unet premium stack, ECLink replaces ReliableLink as the default LINK service
provider for underwater links.

ECLink uses an erasure correction code (type of error correction code that deals with lost frames) to
reduce the protocol overhead required for retransmissions in a lossy channel. This usuaully results in
significantly better performance than ReliableLink in poor channel conditions, and when transferring
large datagrams.

If you have a modem with the commercial version of UnetStack3, it’ll have ECLink loaded as the default
LINK service provider:

123

> uwlink
« Erasure coded link »

Link protocol based on erasure coding, for fast large data transfers over a single hop.

[org.arl.unet.DatagramParam]
 MTU ⇒ 3145584
 RTU ⇒ 1450

[org.arl.unet.link.ECLinkParam]
 compress = true
 controlChannel = 1
 dataChannel = 2
 mac = mac
 maxBatchSize = 65533
 maxPropagationDelay = 3.0
 maxRetries = 2
 minBatchSize = 3
 phy = phy
 reliability = false
 reliableExtra = 0.2
 unreliableExtra = 0.3

[org.arl.unet.link.LinkParam]
 dataRate ⇒ 731.4286

> uwlink << new CapabilityReq()
CapabilityListRsp:INFORM[COMPRESSION,RELIABILITY,CANCELLATION,FRAGMENTATION,LINK_STATUS]

We see that the MTU for ECLink is quite large (as compared to ReliableLink), as ECLink can efficiently
transfer large amounts of data. While the dataRate parameter advertises a similar nominal rate as with
ReliableLink, you’ll find that ECLink yields better practical performance when transferring large files,
and in poor channel conditions. ECLink also supports data compression, and link status notifications.

The phy, controlChannel, dataChannel, mac, maxRetries, and maxPropagationDelay parameters of ECLink are
similar to the ones in ReliableLink. However, ECLink has several additional parameters that control
performance:

minBatchSize

Minimum number of frames to send in each batch.

maxBatchSize

Maximum number of frames to send in each batch.

reliability

Default reliability for a datagram transfer, if a DatagramReq does not specify reliability (null).

reliableExtra

Fraction of extra frames to transmit for erasure correction, during reliable datagram transfer (using
acknowledgements to determine retries). A value of 0.2 indicates 20% extra frames are transmitted.
This allows for 20% frame loss without the need for retries.

unreliableExtra

Fraction of extra frames to transmit for erasure correction, during unreliable datagram transfer (no
acknowledgement or retries). A value of 0.3 indicates 30% extra frames are transmitted. This allows

124

for successful datagram transfer with as much as 30% frame loss.

compress

Enable/disable data compression.

125

Chapter 22. Routing and route maintenance

22.1. Overview
The ROUTING and ROUTE_MAINTENANCE services work closely to provide multi-hop communications.
The ROUTING serice provider is responsible for maintaining a routing table, and for routing datagrams
according to the table. The ROUTE_MAINTENANCE service provider, on the other hand, is responsible
for discovering new routes and providing updated routing information to the ROUTING service
provider.

If a network only requires static routes, the ROUTING service provider is sufficient to provide the
functionality. In case of networks with dynamic route discovery, a ROUTE_MAINTENANCE service
provider discovers routes (or route changes) and publishes RouteDiscoveryNtf messages. The ROUTING
service provider subscribes to these messages and updates its routing tables.

The ROUTING service provider also typically listens for LinkStatusNtf messages from the LINK service
agents. These messages allow it to keep track of link availability and link quality.

Both ROUTING and ROUTE_MAINTENANCE services are described below.

22.2. Routing service
org.arl.unet.Services.ROUTING

Agents offering the ROUTING service provide multi-hop communication.

All agents supporting the ROUTING service must also support the DATAGRAM service (Chapter 14).

It is recommended that agents offering the ROUTING service provide reliability, when requested. Agents
that are able to provide reliability, do so by advertising the DATAGRAM service capability RELIABILITY.

22.2.1. Messages

Agents providing the ROUTING service support the following messages:

• GetRouteReq ⇒ RouteRsp / AGREE / REFUSE — find route or a list of routes

• EditRouteReq ⇒ AGREE / REFUSE — add, delete or change routing table entry

• RouteChangeNtf — sent to agent’s topic when a routing table entry is added, removed or changed

The GetRouteReq message may be used to request a single route (all = false), or a list of routes (all =
true). When a single route is requested, the response is either a RouteRsp (with route information) or a
REFUSE (if no route available). When multiple routes are requested, the response is a series of RouteRsp
messages, followed by an AGREE message to indicate end of the list. If no routes available, a REFUSE
message is sent back instead of the AGREE message.

While the above messages may be used programmatically to manipulate the routing table, typically
users interact with the router via the shell commands described in Chapter 6 and Section 22.4 below.

126

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/net/GetRouteReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/net/RouteRsp.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/net/EditRouteReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/net/RouteChangeNtf.html

22.3. Route maintenance service
org.arl.unet.Services.ROUTE_MAINTENANCE

Agents offering the ROUTE_MAINTENANCE service generate RouteDiscoveryNtf messages to allow
ROUTING service providers to maintain routing tables.

22.3.1. Messages

Agents providing the ROUTE_MAINTENANCE service support the following messages:

• RouteDiscoveryReq ⇒ AGREE / REFUSE / FAILURE — start route discovery to a specified node

• RouteTraceReq ⇒ AGREE / REFUSE / FAILURE — trace current route to a specified node

• RouteDiscoveryNtf — sent to the agent’s topic when a route is discovered

• RouteTraceNtf — sent to requestor when a requested trace is successfully completed

22.4. Router and the route discovery protocol
The Router class (agent name router) provides the ROUTING service in the standard stack. Apart from
supporting the routes, addroute, delroute and delroutesto commands, this agent exposes two parameters:

• auto1hop — automatically assume single-hop routes available, if no entry for destination node in
routing table

• defaultLink — default LINK service provider to use for datagram transmission, if unspecified while
adding a route

Without auto1hop enabled, every route must be explicitly added to the routing table (even when the node
is accessible over a single hop). By enabling auto1hop, we tell the router than any node that isn’t explicitly
added to the routing table is assumed to be accessible over a single hop. This is the default setting:

> router
« Router »

Routes datagrams in the network, based on a routing table.

[org.arl.unet.DatagramParam]
 MTU = 3145581
 RTU = 1447

[org.arl.unet.net.RouterParam]
 auto1hop = true
 defaultLink = uwlink

The RouteDiscoveryProtocol class (agent name rdp) provides the ROUTE_MAINTENANCE service in the
standard stack. This agent has no configurable parameters.

In Chapter 6, we explored several examples of how to set up networks with static and dynamic routes.
To find out more about routing, type help router in the shell:

127

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/net/RouteDiscoveryReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/net/RouteTraceReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/net/RouteDiscoveryNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/net/RouteTraceNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/net/RouterParam.html#auto1hop
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/net/RouterParam.html#defaultLink

> help router
router - access to routing service

Examples:
 routes // display routing table
 routes 2 // display routes to node 2
 addroute 27, 29 // add a route to node 27 via node 29
 delroute 'as7623' // delete route with UUID as7623
 editroute 'as7623', metric: 5.0 // edit route to change metric
 delroutesto 27 // delete all routes to node 27
 delroutes // delete all routes
 trace 27 // trace route to node 27
 ping 27 // check if node 27 is accessible

Parameters:

- router.MTU - maximum data transfer size
- router.RTU - recommended data transfer size
- router.auto1hop - automatically assume single hop routes
- router.defaultLink - default link to use

Commands:

- routes - print routing table
- addroute - add a route to the routing table
- editroute - edit a route in the routing table
- delroute - delete a route from the routing table
- delroutesto - delete all routes to specified node from the routing table
- delroutes - delete all routes from the routing table

You can also type help followed by any of the commands above to get more information on the usage of
that command.

128

Chapter 23. Transport service
org.arl.unet.Services.TRANSPORT

23.1. Overview
Agents offering the TRANSPORT service provide end-to-end reliability and fragmentation/reassembly for
large datagrams. They may also support connection-oriented services for data streaming. Agents
providing this service typically use the ROUTING service for multi-hop delivery of data.

All agents supporting the TRANSPORT service must also support the DATAGRAM service (Chapter 14),
along with the RELIABILITY and FRAGMENTATION capabilities. It is also recommended that they
support the CANCELLATION and PROGRESS capabilities, since datagrams at this level are likely to be
large.

There are no special messages or parameters defined by the TRANSPORT service, but agents providing
this service may expose additional parameters to configure the transport protocol in use.

23.2. Stop-and-wait transport
The default implementation of the TRANSPORT service is the SWTransport class. If you start the 2-node
network simulation and connect to node A, you can explore the configurable parameters that it
advertises:

> transport
« Stop-and-wait transport »

Multi-hop transport service based on the stop-and-wait protocol.

[org.arl.unet.DatagramParam]
 MTU ⇒ 16777215
 RTU ⇒ 16777215

[org.arl.unet.transport.SWTransportParam]
 dsp = router
 maxHops = 3
 maxRetries = 2
 reportProgress = false
 timeoutPerHop = 90.0

We briefly explain each parameter below:

dsp

Datagram service provider. This is the agent that is used to deliver datagrams. Using router for this
parameter enables multi-hop networks.

maxHops

Maximum number of hops expected to destination nodes.

maxRetries

Maximum number of end-to-end retries, if end-to-end acknowledgements are not received. We

129

recommend that link level reliability be enabled to reduce end-to-end retries. This is easily done by
setting the reliability parameter for a route, or by enabling reliability at the LINK service provider
(if it offers such a parameter).

reportProgress

Setting this parameter to true asks the transport agent to send out periodic DatagramProgressNtf
messages to the requester (on the transmitting node) or on the agent’s topic (on the receiving node),
when transferring large datagrams.

timeoutPerHop

Timeout (in seconds) per hop, for datagram transfer.

Next, let’s try a 2048-byte datagram transfer from node A to node B with progress reports:

> transport.reportProgress = true;
> transport << new DatagramReq(to: 31, data: new byte[2048], reliability: true)
AGREE
transport >> DatagramProgressNtf:INFORM[id:2 to:31 to:(838/2048 bytes, 40%)]
transport >> DatagramProgressNtf:INFORM[id:2 to:31 to:(1676/2048 bytes, 81%)]
transport >> DatagramProgressNtf:INFORM[id:2 to:31 to:(2048/2048 bytes, 100%)]
transport >> DatagramDeliveryNtf:INFORM[id:d76a56bf-58f6-4a9c-8a19-7a0a6ce8bcd4 to:31]

The entire transfer will take a few minutes. During that time, we get periodic DatagramProgressNtf
reports showing how much of the data transfer was completed.

130

Chapter 24. Remote access
org.arl.unet.Services.REMOTE

24.1. Overview
Agents offering the REMOTE service provide text messaging, file transfer, and remote command
execution services across a network.


While the REMOTE service provides a field for credentials to be included in a request,
it does not specify how authentication and security should be handled by an agent. It is
important for developers and users of the REMOTE service to give due consideration to
network security before enabling this service on their network.

24.1.1. Messages

Agents providing the REMOTE service support the following messages:

• RemoteTextReq ⇒ AGREE / REFUSE / FAILURE — send a text message to remote node

• RemoteFileGetReq ⇒ AGREE / REFUSE / FAILURE — download a file from remote node

• RemoteFilePutReq ⇒ AGREE / REFUSE / FAILURE — upload a file to remote node

• RemoteExecReq ⇒ AGREE / REFUSE / FAILURE — execute a shell command on the remote node

• RemoteTextNtf — sent to the agent’s topic when a text message from another node arrives

• RemoteFileNtf — sent to the agent’s topic when an incoming file transfer from another node is
completed

• RemoteSuccessNtf — sent to a requester when a remote operation is successfully completed, if an
acknowledgement was requested

• RemoteFailureNtf — sent to a requester when a remote operation fails, if an acknowledgement was
requested

24.2. RemoteControl
Start the 2-node network and connect to node A:

131

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/remote/RemoteTextReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/remote/RemoteFileGetReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/remote/RemoteFilePutReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/remote/RemoteExecReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/remote/RemoteTextNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/remote/RemoteFileNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/remote/RemoteSuccessNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/remote/RemoteFailureNtf.html

> agentsForService org.arl.unet.Services.REMOTE
[remote]
> remote
« Remote control »

Text messaging and remote command execution service.

[org.arl.unet.remote.RemoteControlParam]
 cwd = /Users/mandar/tmp/unet-3.2.0/scripts
 dsp = transport
 enable = false
 groovy = true
 reliability = true
 shell = websh

We see that the REMOTE service is provided by the remote agent of type RemoteControl. The agent’s
behavior is controlled by several parameters:

cwd

Current working directory. This directory is the reference location for all file transfers and command
execution.

dsp

Datagram service provider. This is the agent that is used to deliver datagrams.

shell

SHELL service provider (see Chapter 27) used to execute commands. When a remote command is to
be executed, a request is sent to this shell agent to execute the command.

groovy

Enable Groovy extensions for shell commands. This should only be enabled if the shell is a Groovy
shell. The only Groovy extension defined at this point in time is the ? shortcut. Starting a command
with a ? automatically sends the output of the command back to the requesting node (e.g. ?phy.MTU is
equivalent to tell me, phy.MTU as String). We have encountered the use of this extension before in
Section 5.5.

reliability

Setting this to true enables reliability for all datagrams used by the agent.

enable

Setting this to true enables incoming remote file operations and remote commands. The parameter is
false by default, for security reasons. Outgoing remote operations are always enabled, irrespective of
this parameter. Incoming and outgoing text messaging is also always enabled when this agent is
loaded.


The default RemoteControl agent in the basic stack does not implement any
authentication. Once enabled, it will accept all file transfer and remote command
execution requests. Care should be taken not to enable it in networks where malicious
hackers may be able to send harmful requests to your node.

132



The phy[CONTROL].scrambler and phy[DATA].scrambler parameters available in many
UnetStack-based modems provide a basic level of protection against malicious hackers
by scrambling each transmission in the modem. Setting the scrambler to a "secret"
value (64-bit key) in all your nodes enables this basic protection. Do bear in mind that
scrambling is not a crypotgraphically strong technique, and will not protect you from a
serious hacker. The technique is also vulnerable to playback attack, even if the
malicious hacker is unable to unscramble your frame.

All remote commands (tell, fget, fput, rsh, and ack) encountered in Section 5.4 and Section 5.5 are
implemented by the shell using the above messages. For example, the same effect as the tell command
can be achieved by directly sending the RemoteTextReq message to the remote agent on node A:

> remote << new RemoteTextReq(to: host('B'), text: 'hello!', ack: true)
AGREE
remote >> RemoteSuccessNtf:INFORM[RemoteTextReq:REQUEST[to:31 text:hello! ack:true]]

We should see the text message delivered on node B:

[232]: hello!

We encourage you to re-read Section 5.5 and explore the command’s help documentation (help remote)
to fully appreciate the use of this service.

133

Chapter 25. State persistence
org.arl.unet.Services.STATE_MANAGER

25.1. Overview
An agent offering the STATE_MANAGER service provides a way to save the state (parameter values) of
specified (or all) agents.

Such an agent typically subscribes to the PARAMCHANGE topic and monitor ParamChangeNtf for all parameter
changes for all agents. It then helps persist selected agents' parameter values between reboots.

25.1.1. Messages

STATE_MANAGER service providers honor the following messages:

• SaveStateReq ⇒ AGREE / REFUSE / FAILURE — save agent state to a file

• ClearStateReq ⇒ AGREE / REFUSE / FAILURE — clear agent state in memory, and track only parameter
changes henceforth

The SaveStateReq message causes the agent state (changed parameters) to be persisted to a Groovy script
file in the scripts folder. The default name of the file is saved-state.groovy, and this file is automatically
loaded on startup. However, the SaveStateReq message can specify an alternate filename to persist the
state in. In such cases, the file is run manually when the state is to be restored.

25.2. Examples
Fire up Unet audio (bin/unet audio) to test out how state persistence works:

> plvl
phy[1].powerLevel = -42.0
phy[2].powerLevel = -42.0
phy[3].powerLevel = -42.0
phy[4].powerLevel = -42.0
phy.signalPowerLevel = -42.0
> plvl -40
OK
> shutdown

Now start Unet audio again, and you’ll find that the plvl state was not retained through reboots:

> plvl
phy[1].powerLevel = -42.0
phy[2].powerLevel = -42.0
phy[3].powerLevel = -42.0
phy[4].powerLevel = -42.0
phy.signalPowerLevel = -42.0

We can ask it to retain the state:

134

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/Topics.html#PARAMCHANGE
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/state/SaveStateReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/state/ClearStateReq.html

> plvl -40
OK
> savestate ①
AGREE
> ls
README.md [759 bytes]
saved-state.groovy [156 bytes] ②
> shutdown

① The savestate command just sends a SaveStateReq message to the STATE_MANAGER service provider.

② The saved-state.groovy file is created with all the parameter changes to all agents.

Start Unet audio again, and you’ll find that the state is retained:

> plvl
phy[1].powerLevel = -40.0
phy[2].powerLevel = -40.0
phy[3].powerLevel = -40.0
phy[4].powerLevel = -40.0
phy.signalPowerLevel = -40.0
> shutdown

The saved-state.groovy is human-readable, and you’ll see that it simply contains the Groovy code to set
the parameters required to restore the state:

saved-state.groovy:

def phy = agent('phy')
phy[1].powerLevel = -40.0
phy[2].powerLevel = -40.0
phy[3].powerLevel = -40.0
phy[4].powerLevel = -40.0
phy.signalPowerLevel = -40.0

Delete this file and start Unet audio again:

> help savestate
savestate - save state of all or specified agent in Groovy script format

Examples:
 savestate 'pandan' // save current state of all agents
 savestate 'pandan', 'phy' // save current state of specified agent
 savestate 'pandan', phy // save current state of specified agent
 savestate // save current state in "saved-state.groovy"

> help clrstate
clrstate - set current state as the baseline for savestate

Example:
 clrstate // set baseline state
 phy[1].powerLevel = -10 // change parameters
 savestate // save changed parameters

The help shows you that the savestate command can be used to save the state of individual agents, if you
wish, to a filename of your choice. If you save the state to a different filename, it is not automatically

135

restored on startup. But you can restore it easily with a single command (name of the file):

> plvl
phy[1].powerLevel = -42.0
phy[2].powerLevel = -42.0
phy[3].powerLevel = -42.0
phy[4].powerLevel = -42.0
phy.signalPowerLevel = -42.0
> plvl -40
OK
> savestate 'p40', phy ①
AGREE
> plvl -10 ②
OK
> ls
README.md [759 bytes]
p40.groovy [156 bytes] ③
> p40 ④
> plvl
phy[1].powerLevel = -40.0
phy[2].powerLevel = -40.0
phy[3].powerLevel = -40.0
phy[4].powerLevel = -40.0
phy.signalPowerLevel = -40.0

① Save the plvl -40 state to a file called p40.groovy.

② Change the state.

③ The state is saved in the p40.groovy file in the scripts folder.

④ Command p40 runs the p40.groovy file to restore the state to plvl -40.

Startup scripts

While the STATE_MANAGER service provides a convenient way to save the current state,
sometimes you may wish to write a customized startup script that sets up the node the way you
wish. This can be achieved via the setup.groovy, startup.groovy and fshrc.groovy scripts in the
scripts folder.

If you create a setup.groovy script, the default stack is disabled, allowing you to customize the
agents that are loaded. The only agents that are automatically loaded if this script is present are
the NODE_INFO, PHYSICAL and SHELL agents. The setup.groovy script is called during the setup
phase of bootup, when agents are being loaded. It is the responsibility of the setup.groovy script to
setup the rest of the stack by loading appropriate agents.

If you create a startup.groovy script, it is called after all agents are loaded and the stack is fully
initialized. You may put Groovy commands in this script to customize your agent parameters and
other settings. The startup.groovy script is called before the saved-state.groovy script, if one exists.

If you create a fshrc.groovy script, it is executed by each Groovy shell agent, when it is loaded.
This allows customization of commands and variables available in the shell for user interaction.

136

Chapter 26. Scheduler
org.arl.unet.Services.SCHEDULER

26.1. Overview
Agents offering the SCHEDULER service provide a way to schedule sleep/wake tasks in the future.

26.1.1. Messages

The following messages are used by the SCHEDULER service:

• AddScheduledSleepReq ⇒ AGREE / REFUSE / FAILURE — add a new scheduled sleep

• RemoveScheduledSleepReq ⇒ AGREE / REFUSE / FAILURE — remove a scheduled sleep

• GetSleepScheduleReq ⇒ AGREE / REFUSE / FAILURE — get all the scheduled sleep/wake times

• WakeFromSleepNtf — sent to agent’s topic just after node wakes up from a sleep

26.1.2. Parameters

Only parameter is required by the SCHEDULER service:

• rtc — current date/time

26.2. Sleep/wake scheduling
The Unet simulator currently does not support sleep/wake scheduling. While Unet audio supports the
SCHEDULER service, it does not actually put your computer to sleep. Therefore you can experiment with
creating and managing schedules on Unet audio, without worrying about your computer going to sleep.
Start up Unet audio (bin/unet audio) and connect to its shell:

137

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/scheduler/AddScheduledSleepReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/scheduler/RemoveScheduledSleepReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/scheduler/GetSleepScheduleReq.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/scheduler/WakeFromSleepNtf.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/scheduler/SchedulerParam.html#rtc

> agentsForService org.arl.unet.Services.SCHEDULER
[phy]

> phy.rtc
Sun Sep 22 02:58:20 SGT 2019

> help scheduler
scheduler - access to scheduling service

Commands:

- addsleep - schedule sleep and wakeup of the modem
- showsleep - shows sleep/wakeup schedule
- rmsleep - removes sleep/wakeup schedule

> help addsleep
addsleep - schedule sleep and wakeup of the modem

Examples:
 addsleep 1507014548, 1507014558 // sleep from epoch 1507014548 to 1507014558
 addsleep 1507014558 // sleep immediately until 1507014548
 addsleep 10.s.later, 20.s.later // sleep 10s later and wake up 20s later
 addsleep 20.s.later // sleep immediately and wake up 20s later
 addsleep 20.s.later, forever // sleep 20s later forever
 addsleep // sleep immediately forever

> addsleep 1.hour.later, forever
AGREE
> showsleep
bbfb3b79-942c-4fba-bc37-ab9d18dabda5: Sun Sep 22 04:00:00 SGT 2019 to eternity
> rmsleep 'bbfb3b79-942c-4fba-bc37-ab9d18dabda5'
AGREE
> showsleep

> addsleep 1.hour.later, 2.hours.later
AGREE
> showsleep
87de2dec-db29-4b34-a93c-775bfe8c68c5: Sun Sep 22 04:02:36 SGT 2019 to Sun Sep 22 05:02:36 SGT 2019

We see that the phy agent provides the SCHEDULER service in Unet audio. We add a sleep schedule,
check that it shows up, remove it, and check that it is deleted. We then add another schedule.

The addsleep, showsleep, and rmsleep commands use the AddScheduledSleepReq, GetSleepScheduleReq, and
RemoveScheduledSleepReq messages to achieve their functionality. We can manually send this messages to
confirm this, if we like:

> phy << new GetSleepScheduleReq()
SleepScheduleRsp:INFORM[(1 item)]
> ans.sleepSchedule
[87de2dec-db29-4b34-a93c-775bfe8c68c5: Sun Sep 22 04:02:36 SGT 2019 to Sun Sep 22 05:02:36 SGT 2019]

We can also use the web interface to manage the sleep schedule, if we like:

138

A big advantage of working with the web interface for sleep scheduling is that the user interface
displays date/time in a human readable format. On the other hand, programmatic access with messages
requires times to be specified as Unix epoch time.

26.3. Epoch time
The Unix epoch is the number of seconds that have elapsed since January 1, 1970 (midnight UTC), not
counting leap seconds. While computers find it easy to work with epoch time, we find it hard to
interpret. So UnetStack introduces syntactic sugar such as "1.hour.later" that computes the Unix epoch
time 1 hour from now:

> 1.hour.later
1569097078

> 2.minutes.later
1569093616

There are online calculators that’ll help you convert between Unix epoch time and human readable
date/time. This works well, if you need to manually convert a few date/times, but what if you needed to
do this programmatically? Java provides simple APIs to deal with date/times:

> import java.time.Instant
> Instant.now().epochSecond ①
1569094526
> Instant.ofEpochSecond(1569093616) ②
2019-09-21T19:20:16Z
> Instant.parse("2019-09-21T19:20:16Z").epochSecond ③
1569093616

① Get current epoch time.

② Convert epoch time to human readable time in UTC.

③ Convert human readable time in UTC to epoch time.

If you want even nicer looking date/time strings, you should check out Java’s SimpleDateFormat class.

139

https://www.epochconverter.com
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Chapter 27. Shell
org.arl.fjage.shell.Services.SHELL

The SHELL service provides a way to run commands and access files on a node. It is used by agents
providing the REMOTE service to support remote execution of commands from other nodes.

27.1. Overview
Agents providing the SHELL service support execution of commands, and access to files on the node.
While shell agents typically provide interactivity using a terminal/console, they also support messages
for other agents to request execution of commands or access to files.

27.1.1. Messages

• ShellExecReq ⇒ AGREE / REFUSE / FAILURE — execute a command

• GetFileReq ⇒ FileGetRsp / REFUSE / FAILURE — read a file or directory contents

• PutFileReq ⇒ AGREE / REFUSE / FAILURE — write contents to a file, or delete a file

27.2. Script engines
The language in which the commands are written is not defined by the service, but depends on the shell
agent. fjåge supports a pluggable mechanism for an ShellAgent to use any ScriptEngine. Various script
engines are available in fjåge and UnetStack, including the GroovyScriptEngine, EchoScriptEngine, and
ATScriptEngine.

27.3. Examples
Start the 2-node network and connect to node A:

> agentsForService org.arl.fjage.shell.Services.SHELL ①
[websh]
> websh.send new ShellExecReq(cmd: 'file("foobar").text = "FOOBAR";') ②
websh >> AGREE
> ls ③
foobar [6 bytes]
README.md [759 bytes]
> file("foobar").text ④
FOOBAR

① We find that websh is the agent that provides us the SHELL service.

② We send a command to websh to execute, and it agrees to do so. Since the commands we type are also
executed by the websh agent, we need to be careful to not block the execution. Hence we use a send
rather than a request (or equivalently <<).

③ The command was to create a foobar file, so we check that the file is created.

④ We read the contents of the foobar file to confirm that FOOBAR was correctly written to it.

140

http://org-arl.github.io/fjage/javadoc/org/arl/fjage/shell/ShellExecReq.html
http://org-arl.github.io/fjage/javadoc/org/arl/fjage/shell/GetFileReq.html
http://org-arl.github.io/fjage/javadoc/org/arl/fjage/shell/GetFileRsp.html
http://org-arl.github.io/fjage/javadoc/org/arl/fjage/shell/PutFileReq.html
http://org-arl.github.io/fjage/javadoc/org/arl/fjage/shell/ShellAgent.html
http://org-arl.github.io/fjage/javadoc/org/arl/fjage/shell/ScriptEngine.html

Next, let’s try the GetFileReq and PutFileReq messages to read, write and delete this file:

> websh.send new GetFileReq(filename: 'scripts/foobar') ①
websh >> INFORM: GetFileRsp
> ntf.contents ②
[70, 79, 79, 66, 65, 82]
> new String(ntf.contents) ③
FOOBAR
> websh.send new PutFileReq(filename: 'scripts/foobar', contents: 'foooobaaaar')
websh >> AGREE ④
> file('foobar').text ⑤
foooobaaaar
> websh.send new PutFileReq(filename: 'scripts/foobar', contents: null)
websh >> AGREE ⑥
> ls
README.md [759 bytes]
> websh.send new GetFileReq(filename: 'scripts') ⑦
websh >> INFORM: GetFileRsp
> new String(ntf.contents)
README.md 759 1568297372000 ⑧

① The file foobar was created in the scripts folder, which is the default location for the file() function.
We ask to read the file, and get a GetFileRsp response back.

② The file contents are read back as a list of bytes.

③ We convert the list of bytes to a String to get our FOOBAR contents.

④ We send a PutFileReq to change the contents of the file.

⑤ We verify that the file contents were indeed changed, as requested.

⑥ Sending a PutFileReq with contents set to null deletes the file.

⑦ Asking for the contents of a directory using GetFileReq gets us the directory listing back.

⑧ The listing consists of all files in the directory, one file per line. Each line has a filename, file size and
file modificiation timestamp (epoch time). If a file is a directory, the filename is suffixed by a /.

We interacted with the SHELL service provider using a shell! That’s not very useful in practice, but
served to show you how these messages work. Typically, these messages are sent by other agents that
wish to get the shell to run commands and access files for them (e.g. RemoteControl agent in Section 24.2).
The agents may be running remotely in a fjåge slave container or on a gateway (via the UnetSocket API),
where they may not have direct access to the filesystem of the node.

141

Part V: Extending UnetStack

142

Chapter 28. Developing your own agents
By now, you should be very familiar with the concept of agents. You have interacted with them via
commands and messages throughout this handbook, but what exactly is an agent?

If you lookup the Wikipedia entry for a software agent, you’ll find:

The term agent describes a software abstraction, an idea, or a concept, similar to object-oriented
programming terms such as methods, functions, and objects. The concept of an agent provides a
convenient and powerful way to describe a complex software entity that is capable of acting with a
certain degree of autonomy in order to accomplish tasks on behalf of its host. But unlike objects,
which are defined in terms of methods and attributes, an agent is defined in terms of its behavior.

— Wikipedia: Software agent, retrieved 8 September 2019

In this chapter, we take this somewhat abstract concept and crystallize it by developing a simple agent.
While the idea of writing your own agent might sound daunting at first, you’ll soon see that it is actually
quite easy!

28.1. Unet agents
Agents are the basic building blocks of the UnetStack. They exchange messages, provide services and
implement protocols. While what is expected from a well-behaved agent is quite demanding, most of the
necessary core behaviors are already implemented for you by the UnetAgent base class. All you need to
do is to extend it, and add in a little code to teach the agent what you want it to do.



While you have the option of writing agents in Java or Groovy (or any other language
running on the Java VM), we recommend writing agents in Groovy, as Groovy agents
tend to need less biolerplate code and are more readable and maintainable. They are
also easier to test as Groovy classes can be dynamically loaded from source, without
having to pre-compile them. However, if you are already an expert in Java and prefer
to use it, you’re welcome to do so.

The basic skeleton of a Groovy agent looks like this:

143

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/UnetAgent.html

import org.arl.fjage.*
import org.arl.unet.*

class MyAgent extends UnetAgent {

 @Override
 void setup() {
 // this method is called when the stack is initialized
 // register services and capabilities that you provide here
 }

 @Override
 void startup() {
 // this method is called just after the stack is running
 // look up other agents and services here, as needed
 // subscribe to topics of interest to get notifications
 }

 @Override
 Message processRequest(Message msg) {
 // process requests supported by the agent, and return responses
 // if request is not processed, return null
 return null
 }

 @Override
 void processMessage(Message msg) {
 // process other messages, such as notifications here
 // if a message is not interesting, it can be safely just ignored
 }

}

While you don’t strictly need the @Override annotations, it is a good practice to use them whenever you
are overriding a method from a superclass. The annotation tells the compiler that this is what you
intend, and so if you make a typographical mistake and type in a wrong method name (one that doesn’t
exist in the superclass), the compiler will warn you.

If you do not need any of these methods, you can skip the definition as the base class provides default
implementations. There are a several other methods that you can override to customize your agent, but
these are less commonly needed and so we’ll skip them for now. You’ll come across them later.



If you happen to be already familiar with the fjåge agent lifecycle, you may wish to
note that the setup() method is called from the init() method of the agent. The
startup() method is called from a one-shot behavior scheduled during initialization.
The processRequest() and processMessage() methods are called from a message
behavior added during initialization.

28.2. Groovy echo daemon
It’s best to illustrate with a simple example.

Let’s develop an echo daemon that will respond to each incoming echo request datagram with an echo
response datagram containing the same data as the echo-request. We need a way to identify which

144

https://fjage.readthedocs.io/en/latest/behaviors.html#agent-lifecycle

datagram is an echo request, as we don’t want to be echoing datagrams intended for other agents or for
the user. We do this by defining an echo request datagram as any datagram with protocol USER (recall
that protocol numbers from USER onwards are available for your own applications to use). We do not
want the response to use the same protocol, otherwise our daemon (running on the source node) could
get confused and echo the response, which would in turn be echoed again by the destination node’s
daemon, ad infinitum. So we use protocol DATA for the echo response datagram, as this protocol is
intended for generic application data.

Here’s our daemon:

import org.arl.fjage.*
import org.arl.unet.*

class EchoDaemon extends UnetAgent {

 @Override
 void startup() {
 // subscribe to all agents that provide the datagram service
 subscribeForService(Services.DATAGRAM)
 }

 @Override
 void processMessage(Message msg) {
 if (msg instanceof DatagramNtf && msg.protocol == Protocol.USER) {
 // respond to protocol USER datagram with protocol DATA datagram
 send new DatagramReq(
 recipient: msg.sender,
 to: msg.from,
 protocol: Protocol.DATA,
 data: msg.data
)
 }
 }

}

Let’s walk through the above code:

1. Our agent does not provide any formal services or capabilities, so we we skip the setup() and
processRequest() methods from the skeleton.

2. The startup() method looks up all agents providing the DATAGRAM service, and subscribes to any
notifications from any of these agents. These notifications will inlcude the DatagramNtf messages that
are published when datagrams are received from another node. When a notification arrives, the
processMessage() method will be called.

3. In the processMessage() method, we check for datagram notifications with protocol USER, and respond
to each of them by sending a DatagramReq to the sender of the notification, requesting it to send a
datagram with protocol DATA to the node that sent the echo request, with the data copied from the
echo request.

That’s it!

145



Do not get confused between sender and from, and recipient and to fields in datagram
messages. The sender and recipient always refer to the agents that generate and
consume the message, respectively. These are entities within a single Unet node. The
from and to are node addresses that tell us which node is transmitting the datagram,
and which node is the intended destination.

It’s time for us to test this agent. Create a file called EchoDaemon.groovy in the classes folder and copy the
above daemon code into it.

Editing scripts and classes

With the Unet simulator or Unet audio running on your machine, you can use your favorite text
editor to directly create the EchoDaemon.groovy in the classes folder. However, a more generic way
(that works on modems as well) is to open node A’s shell, select Script editor, and use the new file
button () in the /classes/ section to create the file:

The same approach can be used to create Groovy scripts in the scripts folder.

Now start the 2-node network simulation that we have been using as a testbed, and on node B, load the
agent:

> container.add 'echo', new EchoDaemon(); ①
> ps
statemanager: org.arl.unet.state.StateManager - IDLE
remote: org.arl.unet.remote.RemoteControl - IDLE
rdp: org.arl.unet.net.RouteDiscoveryProtocol - IDLE
ranging: org.arl.unet.phy.Ranging - IDLE
uwlink: org.arl.unet.link.ECLink - IDLE
node: org.arl.unet.nodeinfo.NodeInfo - IDLE
websh: org.arl.fjage.shell.ShellAgent - RUNNING
simulator: org.arl.unet.sim.SimulationAgent - IDLE
phy: org.arl.unet.sim.HalfDuplexModem - IDLE
bbmon: org.arl.unet.bb.BasebandSignalMonitor - IDLE
arp: org.arl.unet.addr.AddressResolution - IDLE
transport: org.arl.unet.transport.SWTransport - IDLE
echo: EchoDaemon - IDLE ②
router: org.arl.unet.net.Router - IDLE
mac: org.arl.unet.mac.CSMA - IDLE
WebGW-5c9c1c68385a388f: REMOTE

① Create an agent called echo based on the EchoDaemon class.

② We see that the echo agent is now running.

Our daemon is up and running!

146

Debugging agents

If you have any errors in the EchoDaemon.groovy that cause compilation to fail, the agent won’t load,
and you’ll get an error message on the shell. Sometimes it helps to look at the log file (logs/log-
0.txt) for more details on the error.

In some rare cases, instead of printing an error, the shell may simply refuse to run the command
by showing a "-" and waiting for more input because it thinks that the command you gave is
incomplete. If this happens, look at your code to find the error, or try compiling manually using
groovyc (similar to javac command in the next section) to get more details on the error.

Once the daemon is successfully loaded on node B, we can test it from node A:

> subscribe phy ①
> phy << new DatagramReq(to: host('B'), protocol: Protocol.USER, data: [42]) ②
AGREE
phy >> TxFrameNtf:INFORM[type:DATA txTime:2809812247]
phy >> RxFrameStartNtf:INFORM[type:DATA rxTime:2811767943]
phy >> RxFrameNtf:INFORM[type:DATA from:31 to:232 rxTime:2811767943 (1 byte)]
> ntf.data
[42] ③

① We subscribe to phy so that we can see the incoming echo response from the peer node.

② Transmit a physical layer frame containing the echo request and some data.

③ The data we sent was echoed back.

We have written our first agent! Was easy, wasn’t it?


Unet modems also have a classes folder that accepts Groovy source files or compiled
Java/Groovy class files. You can use the web interface of the modem to upload files to
that folder. If your code has many class files, you may wish to package them together
into a jar archive and place it in the jars folder.

28.3. Java echo daemon
If you’re a Java programmer and find the Groovy syntax daunting, you might prefer to write your agents
in pure Java (at the expense of verbosity and more steps for testing). This is the equivalent Java code
below for the Groovy agent we developed in the last section:

147

import org.arl.fjage.*;
import org.arl.unet.*;

public class EchoDaemon extends UnetAgent {

 @Override
 public void startup() {
 // subscribe to all agents that provide the datagram service
 subscribeForService(Services.DATAGRAM);
 }

 @Override
 public void processMessage(Message msg) {
 if (msg instanceof DatagramNtf && ((DatagramNtf)msg).getProtocol() == Protocol.USER) {
 // we got an echo request!
 // respond with a protocol DATA datagram
 DatagramNtf ntf = (DatagramNtf)msg;
 DatagramReq req = new DatagramReq(ntf.getSender());
 req.setTo(ntf.getFrom());
 req.setProtocol(Protocol.DATA);
 req.setData(ntf.getData());
 send(req);
 }
 }

}

In Java, you’ll first need to compile the Java code. Create a EchoDaemon.java file with the above contents.
To compile it, you’ll need to have fjåge and unet-framework jar files on the classpath:

$ javac -cp lib/fjage-1.8.0.jar:lib/unet-framework-3.2.0.jar EchoDaemon.java

You should now have a EchoDaemon.class file which you copy to the classes folder. To avoid duplicate
classes, remember to first delete the EchoDaemon.groovy file!

Finally, you can run the 2-node network simulator and test the agent, just as you did in the previous
section.

28.4. Behaviors
Agents implement most of their functionality with behaviors.


UnetStack is implemented on top of the fjåge agent framework. fjåge provides a set of
standard behaviors for agents to extend. We will explore some of these behaviors in
this section, but you are encouraged to read the fjåge documentation at your leisure to
learn more.

We have been implicitly using two behaviors so far. The startup() method is called by the UnetAgent base
class using a OneShotBehavior, and the processMessage() method is called from a MessageBehavior. While
you could have manually added these behaviors, the UnetAgent base class does this for you, because
almost all Unet agents require this.

Let’s next look at a use case for explicitly adding other behaviors. Say we wanted our echo daemon to

148

https://fjage.readthedocs.io/en/latest/introduction.html
https://fjage.readthedocs.io/en/latest/index.html

not respond immediately, but after 7 seconds. How would we do that?

We could of course add a delay(7000) in the processMessage() method, but that would be a bad idea. If we
did that, the agent would sleep for 7 seconds on receiving a request and not process any request from
any other nodes! We want the agent to be responsive while waiting, and so do not want to block
execution. Instead, we want a behavior that will occur 7 seconds later — this is precisely what a
WakerBehavior does. Here’s our new processMessage() method:

 @Override
 void processMessage(Message msg) {
 if (msg instanceof DatagramNtf && msg.protocol == Protocol.USER) {
 // respond to protocol USER datagram with protocol DATA datagram after 7 seconds
 add new WakerBehavior(7000, {
 send new DatagramReq(
 recipient: msg.sender,
 to: msg.from,
 protocol: Protocol.DATA,
 data: msg.data
)
 })
 }
 }

The WakerBehavior that we add is triggered 7000 ms later, and the echo response is sent in that behavior.
Simple!


Behaviors in Groovy use closures to make the syntax easy to work with. If you were
writing your agent in Java, you’d need to create an anonymous class and override the
onWake() method.

Go ahead and replace the processMessage() method in your EchoDaemon.groovy file and try it! In order to
reload the agent, all you need to do on node B is:

> container.kill echo
true
> container.add 'echo', new EchoDaemon();

And now you can send an echo request from node A as before and see that the response is delayed by 7
seconds.

You could also send a second request during those 7 seconds, and the echo daemon on node B would
process that concurrently. You can send 2 echo requests right after each other, and you’ll see the
corresponding echo responses 7 seconds later, but right after each other.

149

fjåge behaviors

fjåge provides several behaviors that are commonly used in Unet agents:

One-shot behavior

A behavior that is run only once at the earliest opportunity.

Cyclic behavior

A cyclic behavior is run repeatedly as long as it is active. The behavior may be blocked and
restarted as necessary.

Waker behavior

A behavior that is run after a specified delay in milliseconds.

Ticker behavior

A behavior that runs repeatedly with a specified delay between invocations.

Backoff behavior

A behavior that is similar to the waker behavior, but allows the wakeup time to be extended
dynamically. This is typically useful to implement backoff or retry timeouts.

Poisson behavior

A behavior that is similar to a ticker behavior, but the interval between invocations is an
exponentially distributed random variable. This simulates a Poisson arrival process, commonly
used to model network data sources.

Finite state machine behavior

Finite state machines are commonly used to implement network protocols. They can easily be
implemented using this behavior. These machines are composed of multiple states, each of
which is like a cyclic behavior, with state transitions that can be triggered by the component
behaviors.

You can read more about these behaviors in the fjåge documentation on Agents & Behaviors.

28.5. Parameters
We have seen many agents with parameters that you can get/set. If we wanted to make our echo daemon
delay configurable, it would be perfect to expose it as a parameter. Let’s do that next.

With the echo daemon loaded on node B, we see that it doesn’t have any configurable parameters by
default:

> echo
<<< EchoDaemon >>>

Let’s add a title, description and one delay parameter to our daemon:

150

https://fjage.readthedocs.io/en/latest/behaviors.html

import org.arl.fjage.*
import org.arl.fjage.param.Parameter
import org.arl.unet.*

class EchoDaemon extends UnetAgent {

 enum Params implements Parameter { ①
 delay
 }

 final String title = 'Echo Daemon' ②
 final String description = 'Echoes any USER datagrams back as DATA' ③

 int delay = 7000 ④

 @Override
 void startup() {
 // subscribe to all agents that provide the datagram service
 subscribeForService(Services.DATAGRAM)
 }

 @Override
 void processMessage(Message msg) {
 if (msg instanceof DatagramNtf && msg.protocol == Protocol.USER) {
 // respond to protocol USER datagram with protocol DATA datagram after 7 seconds
 add new WakerBehavior(delay, {
 send new DatagramReq(
 recipient: msg.sender,
 to: msg.from,
 protocol: Protocol.DATA,
 data: msg.data
)
 })
 }
 }

 List<Parameter> getParameterList() { ⑤
 allOf(Params)
 }

}

① Declare a list of parameters that the agent advertises. We have declared this enum as an inner class,
but you could choose to declare it as a separate class if you wish.

② Provide a descriptive title for the agent.

③ Provide a descriptive text for the agent.

④ Declare the parameter.

⑤ Advertise the list of parameters.



Note that we had to take 3 steps to add a parameter: declare a list of parameters,
declare the parameter, and advertise the parameter. While this might seem like a lot,
bear in mind that parameters are much more than just an agent’s class attributes.
Parameters can be get/set remotely, even from a different Java VM, different computer,
or through a UnetSocket gateway API.

151


If you were writing the agent in Java instead of Groovy, you’d need to implement
getters and setters for parameter delay, rather than simply declare the attribute. This is
because Groovy automatically creates the getters and setters for you.

Let’s see how the agent looks with parameters. Reload the agent on node B and check its parameters:

> container.kill agent('echo')
true
> container.add 'echo', new EchoDaemon();
> echo
<<< Echo Daemon >>> ①

Echoes any USER datagrams back as DATA ②

[EchoDaemon.Params]
 delay = 7000

> echo.delay
7000
> echo.delay = 5000
5000
> echo.delay
5000

① Notice the change in title.

② The description is shown here.

We have changed the delay from 7 seconds to 5 seconds. Go ahead and send a echo request from node A
and see that you get a response back in 5 seconds!


If you want to compute parameter values on demand or validate parameters, you can
implement getters/setters for the parameter, and they will be called. If you want a
read-only parameter, you can declare the attribute as private and implement only a
getter for that parameter.


While our example above uses a static description, the description can also be
dynamic. This can be useful if you want to display agent’s status information in the
description. To implement dynamic descriptions, simply replace the description

attribute by a getter getDescription() that returns a String description when called.

28.6. Services, capabilities, and notifications
Most of the agents we have been interacting with, have advertised services, and sometimes, optional
capabilities. They also honor requests and publish unsolicited notifications. All of these are quite
straightforward to implement, and you can explore some of these features in this blog article on how to
implement a simple PHYSICAL service agent (modem driver). We will explore some of these in the next
chapter, along with other cool features like finite state machine behaviors and protocol data unit (PDU)
codecs.

152

https://blog.unetstack.net/developing-modem-drivers-for-unetstack

Chapter 29. Implementing network protocols
You now know how to write simple agents. But real world network protocols demand more complexity
such as advertising services, looking up other agents, providing parameters that are computed on
demand, encoding/decoding complex PDUs, generating random variates, and describing behaviors as
finite state machines (FSMs). In this chapter, we illustrate how to do all these things with ease, using a
few examples.

In Chapter 20, we looked at the MAC service in detail. In the next few sections, we develop three simple
MAC agents (MySimplestMac, MySimpleThrottledMac and MySimpleHandshakeMac) to illustrate how network
protocols and services are implemented by agents. The MAC agents are intentionally kept simple and not
optimized for performance, as we wish to illustrate the key aspects of MAC agent development without
getting lost in the details of optimal protocols.

29.1. Simple MAC without handshake
To illustrate how a MAC agent might work, let us start with a simple MAC agent that grants every
reservation request as soon as it is made:

153

import org.arl.fjage.*
import org.arl.unet.*
import org.arl.unet.mac.*

class MySimplestMac extends UnetAgent {

 @Override
 void setup() {
 register Services.MAC // advertise that the agent provides a MAC service
 }

 @Override
 Message processRequest(Message msg) {
 if (msg instanceof ReservationReq) {

 // check requested duration
 if (msg.duration <= 0) return new RefuseRsp(msg, 'Bad reservation duration')

 // prepare START reservation notification
 ReservationStatusNtf ntf1 = new ReservationStatusNtf(
 recipient: msg.sender,
 inReplyTo: msg.msgID,
 to: msg.to,
 status: ReservationStatus.START)

 // prepare END reservation notification
 ReservationStatusNtf ntf2 = new ReservationStatusNtf(
 recipient: msg.sender,
 inReplyTo: msg.msgID,
 to: msg.to,
 status: ReservationStatus.END)

 // send START reservation notification immediately
 add new OneShotBehavior({
 send ntf1
 })

 // wait for reservation duration, and then send END reservation notification
 add new WakerBehavior(Math.round(1000*msg.duration), {
 send ntf2
 })

 // return a reservation response, which defaults to an AGREE performative
 return new ReservationRsp(msg)
 }
 return null
 }

}

Note a number of interesting features of the code above:

1. The setup() method is used to advertise the service provided by this agent.

2. We provide basic error checking, and refuse a request that is invalid, providing a descriptive reason.

3. We prepare the AGREE response as well as the START and END status notification messages, all at
once. We send out the START notification immediately (using a OneShotBehavior), use a WakerBehavior
to schedule the END notification to be sent out at an appropriate time, and then simply return the
AGREE response. The use of the OneShotBehavior ensures that the START notification is sent after the

154

AGREE response, and not before.

4. We return a null if we don’t understand the request, allowing the superclass to respond with a
NOT_UNDERSTOOD message.

While the above code implements a fully functional MAC agent, it needs to respond to
ReservationCancelReq, ReservationAcceptReq and TxAckReq messages, and provide channelBusy,
reservationPayloadSize, ackPayloadSize, maxReservationDuration and recommendedReservationDuration

parameters in order to comply with the MAC service specification (Chapter 20). We add this functionality
trivially, by responding to the messages with RefuseRsp (message with a REFUSE performative and a
descriptive reason), and returning default values for all the parameters. The resulting complete source
code is shown below:

155

import org.arl.fjage.*
import org.arl.fjage.param.Parameter
import org.arl.unet.*
import org.arl.unet.mac.*

class MySimplestMac extends UnetAgent {

 @Override
 void setup() {
 register Services.MAC
 }

 @Override
 Message processRequest(Message msg) {
 switch (msg) {
 case ReservationReq:
 if (msg.duration <= 0) return new RefuseRsp(msg, 'Bad reservation duration')
 ReservationStatusNtf ntf1 = new ReservationStatusNtf(
 recipient: msg.sender,
 inReplyTo: msg.msgID,
 to: msg.to,
 status: ReservationStatus.START)
 ReservationStatusNtf ntf2 = new ReservationStatusNtf(
 recipient: msg.sender,
 inReplyTo: msg.msgID,
 to: msg.to,
 status: ReservationStatus.END)
 add new OneShotBehavior({
 send ntf1
 })
 add new WakerBehavior(Math.round(1000*msg.duration), {
 send ntf2
 })
 return new ReservationRsp(msg)
 case ReservationCancelReq:
 case ReservationAcceptReq: // respond to other requests defined
 case TxAckReq: // by the MAC service with a RefuseRsp
 return new RefuseRsp(msg, 'Not supported')
 }
 return null
 }

 // expose parameters defined by the MAC service, with just default values

 @Override
 List<Parameter> getParameterList() {
 return allOf(MacParam) // advertise the list of parameters
 }

 final boolean channelBusy = false // parameters are marked as 'final'
 final int reservationPayloadSize = 0 // to ensure that they are read-only
 final int ackPayloadSize = 0
 final float maxReservationDuration = Float.POSITIVE_INFINITY
 final Float recommendedReservationDuration = null

}

Now we have a fully-compliant, but very simple, MAC agent!

156

29.2. Testing our simple MAC
The MySimplestMac agent from the previous section is available in the samples folder of your Unet
simulator. To test it, fire up the 2-node network simulator and connect to node A:

> ps
remote: org.arl.unet.remote.RemoteControl - IDLE
state: org.arl.unet.state.StateManager - IDLE
rdp: org.arl.unet.net.RouteDiscoveryProtocol - IDLE
ranging: org.arl.unet.phy.Ranging - IDLE
uwlink: org.arl.unet.link.ECLink - IDLE
node: org.arl.unet.nodeinfo.NodeInfo - IDLE
websh: org.arl.fjage.shell.ShellAgent - RUNNING
simulator: org.arl.unet.sim.SimulationAgent - IDLE
phy: org.arl.unet.sim.HalfDuplexModem - IDLE
bbmon: org.arl.unet.bb.BasebandSignalMonitor - IDLE
arp: org.arl.unet.addr.AddressResolution - IDLE
transport: org.arl.unet.transport.SWTransport - IDLE
router: org.arl.unet.net.Router - IDLE
mac: org.arl.unet.mac.CSMA - IDLE

We see that the org.arl.unet.mac.CSMA agent is the current mac. To use our MySimplestMac agent, you first
need to kill the org.arl.unet.mac.CSMA agent, and then load the MySimplestMac agent:

> container.kill mac
true
> container.add 'mac', new MySimplestMac()
mac
> ps
remote: org.arl.unet.remote.RemoteControl - IDLE
state: org.arl.unet.state.StateManager - IDLE
rdp: org.arl.unet.net.RouteDiscoveryProtocol - IDLE
ranging: org.arl.unet.phy.Ranging - IDLE
uwlink: org.arl.unet.link.ECLink - IDLE
node: org.arl.unet.nodeinfo.NodeInfo - IDLE
websh: org.arl.fjage.shell.ShellAgent - RUNNING
simulator: org.arl.unet.sim.SimulationAgent - IDLE
phy: org.arl.unet.sim.HalfDuplexModem - IDLE
bbmon: org.arl.unet.bb.BasebandSignalMonitor - IDLE
arp: org.arl.unet.addr.AddressResolution - IDLE
transport: org.arl.unet.transport.SWTransport - IDLE
router: org.arl.unet.net.Router - IDLE
mac: MySimplestMac - IDLE

> mac
« MySimplestMac »

[org.arl.unet.mac.MacParam]
 ackPayloadSize ⇒ 0
 channelBusy ⇒ false
 maxReservationDuration ⇒ Infinity
 recommendedReservationDuration ⇒ null
 reservationPayloadSize ⇒ 0

It’s loaded and working!

Now, you can ask for a reservation and see if it responds correctly:

157

> mac << new ReservationReq(to: 31, duration: 3.seconds)
ReservationRsp:AGREE
mac >> ReservationStatusNtf:INFORM[to:31 status:START]
mac >> ReservationStatusNtf:INFORM[to:31 status:END]

Indeed it does! The START notification arrives immediately after the AGREE response, and the END
notification arrives about 3 seconds later.

Logging and debugging

When testing agents, you’ll often feel the need to log debug information. Every agent already has a
Java logger (log) defined, and can be used to log information to the log file (logs/log-0.txt). The
Java logger supports various levels of logging: severe, warning, info, fine, finer, finest. For
example, to log a message at a fine level, simply do something like:

log.fine 'Some debugging information'

The log level can be controlled on a per-class or per-package basis using the logLevel command on
the Unet shell (type help logLevel for details). To set the current log level to include fine level logs:

> logLevel FINE

You can access the logs from the web interface "Logs" tab, or on your disk in the logs folder. The
active agent log file is always called log-0.txt. To see the last few lines of this file from your shell:

> tail
1568482567444|INFO|org.arl.unet.remote.RemoteControl/B@57:startup|Using transport for communication
1568482567447|INFO|org.arl.unet.link.ECLink/B@59:startup|No PHY specified, auto detecting...
1568482567448|INFO|org.arl.unet.link.ECLink/B@59:startup|Using agent 'phy' for PHY
1568482567448|INFO|org.arl.unet.link.ECLink/B@59:startup|No MAC specified, auto detecting...
1568482567449|INFO|org.arl.unet.link.ECLink/B@59:startup|Using agent 'mac' for MAC
1568482567451|INFO|org.arl.unet.transport.SWTransport/B@69:startup|Using router for communication
1568482567453|INFO|org.arl.unet.remote.RemoteControl/B@57:startup|Using websh for command exec
1568482567511|INFO|org.arl.unet.remote.RemoteControl/A@42:startup|Using websh for command exec
1568482572443|INFO|org.arl.unet.nodeinfo.NodeInfo/A@52:obtainAddress|Node name is A, address is 232,
address size is 8 bits
1568482572449|INFO|org.arl.unet.nodeinfo.NodeInfo/B@68:obtainAddress|Node name is B, address is 31,
address size is 8 bits
1568482584194|INFO|MySimplestMac/A@72:init|Loading agent mac [MySimplestMac] on A

29.3. Simple MAC with throttling
While the above simple MAC would work well when the traffic offered to it is random, it will perform
poorly if the network is fully loaded. All nodes would constantly try to access the channel, collide and
the throughput would plummet. To address this concern, one may add an exponentially distributed
random backoff (Poisson arrival to match the assumption of Aloha) for every request, to introduce
randomness. The backoff could be chosen to offer a normalized network load of approximately 0.5, since
this generates the highest throughput for Aloha.

158

Here’s the updated code with some bells and whistles:

import org.arl.fjage.*
import org.arl.fjage.param.Parameter
import org.arl.unet.*
import org.arl.unet.phy.*
import org.arl.unet.mac.*

class MySimpleThrottledMac extends UnetAgent {

 private final static double TARGET_LOAD = 0.5
 private final static int MAX_QUEUE_LEN = 16

 ①
 private AgentID phy
 boolean busy = false // is a reservation currently ongoing?
 Long t0 = null // time of last reservation start, or null
 Long t1 = null // time of last reservation end, or null
 int waiting = 0

 @Override
 void setup() {
 register Services.MAC
 }

 @Override
 void startup() {
 phy = agentForService(Services.PHYSICAL) ②
 }

 @Override
 Message processRequest(Message msg) {
 switch (msg) {
 case ReservationReq:
 if (msg.duration <= 0) return new RefuseRsp(msg, 'Bad reservation duration')
 if (waiting >= MAX_QUEUE_LEN) return new RefuseRsp(msg, 'Queue full')
 ReservationStatusNtf ntf1 = new ReservationStatusNtf(
 recipient: msg.sender,
 inReplyTo: msg.msgID,
 to: msg.to,
 status: ReservationStatus.START)
 ReservationStatusNtf ntf2 = new ReservationStatusNtf(
 recipient: msg.sender,
 inReplyTo: msg.msgID,
 to: msg.to,
 status: ReservationStatus.END)

 // grant the request after a random backoff ③
 AgentLocalRandom rnd = AgentLocalRandom.current() ④
 double backoff = rnd.nextExp(TARGET_LOAD/msg.duration/nodes) ⑤
 long t = currentTimeMillis()
 if (t0 == null || t0 < t) t0 = t
 t0 += Math.round(1000*backoff) // schedule packet with a random backoff
 if (t0 < t1) t0 = t1 // after the last scheduled packet ⑥
 long duration = Math.round(1000*msg.duration)
 t1 = t0 + duration
 waiting++
 add new WakerBehavior(t0-t, { ⑦
 send ntf1
 busy = true
 waiting--

159

 add new WakerBehavior(duration, {
 send ntf2
 busy = false
 })
 })

 return new ReservationRsp(msg)
 case ReservationCancelReq:
 case ReservationAcceptReq:
 case TxAckReq:
 return new RefuseRsp(msg, 'Not supported')
 }
 return null
 }

 // expose parameters defined by the MAC service, and one additional parameter

 @Override
 List<Parameter> getParameterList() {
 return allOf(MacParam, Param)
 }

 enum Param implements Parameter {
 nodes ⑧
 }

 int nodes = 6 // number of nodes in network, to be set by user

 final int reservationPayloadSize = 0
 final int ackPayloadSize = 0
 final float maxReservationDuration = Float.POSITIVE_INFINITY

 boolean getChannelBusy() { ⑨
 return busy
 }

 float getRecommendedReservationDuration() { ⑩
 return get(phy, Physical.DATA, PhysicalChannelParam.frameDuration)
 }

}

① We define a few attributes to keep track of channel state and reservation queue.

② We lookup other agents in startup() after they have had a chance to advertise their services during
the setup phase.

③ Requests are no longer granted immediately, but after a random backoff instead.

④ Random numbers are generated using a AgentLocalRandom utility. This utility ensures repeatable
results during discrete event simulation, aiding with debugging, and so is the preferred way of
generating random variates.

⑤ The nextExp() function generate a exponentially distributed random number with a specified rate
parameter. The rate parameter is computed such that the average backoff introduced helps to
achieve the specified target load.

⑥ In Groovy, a comparison with null (initial value of t1) is permitted, and will always be false.

⑦ Note that we no longer send the START notification immediately. Instead we schedule it after a
backoff, and then schedule the END notification after the reservation duration from the START.

160

⑧ We implement one user configurable parameter nodes, and advertise it.

⑨ Parameter busy is no longer always false, since we now keep track of reservations. We return busy to
be true only during the time between a reservation START and END.

⑩ Parameter recommendedReservationDuration is now determined based on the frame duration of the
PHYSICAL service, assuming that most reservations are for transmitting one frame. A client is free to
choose a longer reservation time, if it wishes to transmit many frames in one go (as it should for
efficient use of the channel).

A copy of this code is available in the samples folder of your Unet simulator. We encourage you to test it
out, in the same way as we tested MySimplestMac in Section 29.2. You’ll find that the START notification no
longer arrives immediately after the AGREE response, but arrives a few seconds later, after a random
backoff.

29.4. Simple MAC with handshake
While the MAC agents we have developed so far are fully functional, they are simple, and do not involve
any signaling for channel reservation. Many MAC protocols such as MACA and FAMA involve a
handshake using RTS and CTS PDUs. To illustrate how more complex protocols are developed using
UnetStack, we implement a simple RTS-CTS 2-way handshake-based MAC agent next.

Many communication protocols are best described using an FSM. We illustrate the FSM for our simple
handshake-based MAC agent in Figure 10.

Figure 10. Finite state machine (FSM) for the simple handshake-based MAC protocol.

When the channel is free, the agent is in an IDLE state. If the agent receives a ReservationReq, it switches
to the RTS state and sends an RTS PDU to the intended destination node. If it receives a CTS PDU back,

161

then it switches to a TX state and urges the client to transmit data via a ReservationStatusNtf with a
START status. After the reservation period is over, the agent switches back to the IDLE state. If no CTS
PDU is received in the RTS state for a while, the agent times out and returns to the IDLE state after
informing the client of a reservation FAILURE.

If the agent receives an RTS PDU in the IDLE state, it switches to the RX state and responds with a CTS
PDU. The node initiating the handshake may then transmit data for the reservation duration. After the
duration (plus some allowance for 2-way propagation delay), the agent switches back to the IDLE state. If
the agent overhears (aka snoops) RTS or CTS PDUs destined for other nodes, it switches to a BACKOFF
state for a while. During the state, it does not initiate or respond to RTS PDUs. After the backoff period, it
switches back to the IDLE state.

Our RTS and CTS PDUs are identified by a protocol number. Since we are implementing a MAC protocol,
we choose to tag our PDUs using the protocol number reserved for MAC agents (Protocol.MAC). We also
define some timeouts and delays that we will need to use:

int PROTOCOL = Protocol.MAC

float RTS_BACKOFF = 2.seconds
float CTS_TIMEOUT = 5.seconds
float BACKOFF_RANDOM = 5.seconds
float MAX_PROP_DELAY = 2.seconds

Communication protocols often use complicated PDU formats. UnetStack provides a PDU class to help
encode/decode PDUs. Although the RTS and CTS PDUs have a pretty simple format, the PDU is still useful
in defining the format clearly:

int RTS_PDU = 0x01
int CTS_PDU = 0x02

PDU pdu = PDU.withFormat {
 uint8('type') // RTS_PDU/CTS_PDU
 uint16('duration') // ms
}

Here we have defined a PDU with two fields — type (8 bit) and duration (16 bit). The type may be either
of RTS_PDU or CTS_PDU, while the duration will specify the reservation duration in milliseconds. We will
later use this pdu object to encode and decode these PDUs.

162

Encoding and decoding PDUs

Since encoding and decoding of PDUs is required in almost all protocol implementations,
UnetStack provides a PDU class to help you with it. The PDU class provides a declarative syntax for
describing the PDU format. Once you have the PDU format declared, encoding and decoding PDUs
is simply a matter of calling the encode() and decode() methods.

This is best illustrated with an example that you can try on a shell:

> import java.nio.ByteOrder
> pdu = PDU.withFormat {
- length(16) // 16 byte PDU
- order(ByteOrder.BIG_ENDIAN) // byte ordering is big endian
- uint8('type') // 1 byte field 'type'
- uint8(0x01) // literal byte 0x01
- filler(2) // 2 filler bytes
- uint16('data') // 2 byte field 'data' as unsigned short
- padding(0xff) // padded with 0xff to make 16 bytes
- };
> bytes = pdu.encode([type: 7, data: 42])
[7, 1, 0, 0, 0, 42, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
> pdu.decode(bytes)
[data:42, type:7]

The PDU length is defined using the length declaration, and the byte order is defined with the
order declaration. Supported fields include uint8, int8, uint16, int16, uint32, int32, int64, and chars
(string). Fillers and paddings are defined with filler and padding declarations.

Now comes the heart of our MAC protocol implementation –- the FSM shown in Figure 10. First we
define the FSM states and the events that the FSM reacts to:

enum State {
 IDLE, RTS, TX, RX, BACKOFF
}

enum Event {
 RX_RTS, RX_CTS, SNOOP_RTS, SNOOP_CTS
}

Next we use the FSMBuilder utility class to construct a FSMBehavior from a declarative concise
representation of the FSM.

The FSM states are defined using the state(…) declarations. The actions to take when entering/exiting a
state are defined in the onEnter/onExit clauses. The behavior of the FSM in response to events are
defined using the onEvent(…) clauses. Timers that operate in a state are defined using the after(…)

clauses. Finally actions to take continuously while in a state are defined using the action clause.

163

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/PDU.html

Finite state machines (FSMs)

FSMs are very commonly used in network protocol development. Although fjåge provides a
FSMBehavior that helps implement FSMs in agents, it can be tedious to set up. UnetStack provides a
FSMBuilder to make setting up FSM behaviors in agents easy.

Here are the key steps in setting up the FSM:

1. Define the states and events in the FSM as enum declarations.

2. Build the FSMBehavior using FSMBuilder.build. In building the FSM, you should have a state(…)

defined for each of your FSM states.

3. In each FSM state, define your actions, events and timers using the action, onEnter, onExit,
onEvent and after clauses. Actions are continuously executed, like a CyclicBehavior, when the
FSM is in the relevant state. You should call block() and restart() on the behavior to avoid
busy loops when the FSM is idle. The onEnter and onExit clauses are triggered when the state is
entered and exited respectively. Events are triggered when the trigger() method of the
behavior is called and the FSM is in the specified state. Timers (after) are automatically
triggered after the specified amount of time after the state is entered.

4. The setNextState() and reenterState() methods allow you to effect state transitions in your
FSM.

5. For short-lived FSMs, the terminate() method should be called when the FSM behavior is
completed and should be terminated.

It should be easy to see the direct mapping between the FSM diagram and the FSM code below:

int MAX_RETRY = 3
int MAX_QUEUE_LEN = 16

Queue<ReservationReq> queue = new ArrayDeque<ReservationReq>(MAX_QUEUE_LEN)

FSMBehavior fsm = FSMBuilder.build {

 int retryCount = 0
 float backoff = 0
 def rxInfo
 def rnd = AgentLocalRandom.current()

 state(State.IDLE) {
 action {
 if (!queue.isEmpty()) {
 // add random backoff for each reservation to allow other nodes
 // a chance to reserve, especially in case of a heavily loaded network
 after(rnd.nextDouble(0, BACKOFF_RANDOM)) {
 setNextState(State.RTS)
 }
 }
 block()
 }
 onEvent(Event.RX_RTS) { info ->
 rxInfo = info
 setNextState(State.RX)
 }

164

https://org-arl.github.io/fjage/javadoc/index.html?org/arl/fjage/FSMBehavior.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/FSMBuilder.html

 onEvent(Event.SNOOP_RTS) {
 backoff = RTS_BACKOFF
 setNextState(State.BACKOFF)
 }
 onEvent(Event.SNOOP_CTS) { info ->
 backoff = info.duration + 2*MAX_PROP_DELAY
 setNextState(State.BACKOFF)
 }
 }

 state(State.RTS) {
 onEnter {
 Message msg = queue.peek()
 def bytes = pdu.encode(
 type: RTS_PDU,
 duration: Math.ceil(msg.duration*1000))
 phy << new TxFrameReq(
 to: msg.to,
 type: Physical.CONTROL,
 protocol: PROTOCOL,
 data: bytes)
 after(CTS_TIMEOUT) {
 if (++retryCount >= MAX_RETRY) {
 sendReservationStatusNtf(queue.poll(), ReservationStatus.FAILURE)
 retryCount = 0
 }
 setNextState(State.IDLE)
 }
 }
 onEvent(Event.RX_CTS) {
 setNextState(State.TX)
 }
 }

 state(State.TX) {
 onEnter {
 ReservationReq msg = queue.poll()
 retryCount = 0
 sendReservationStatusNtf(msg, ReservationStatus.START)
 after(msg.duration) {
 sendReservationStatusNtf(msg, ReservationStatus.END)
 setNextState(State.IDLE)
 }
 }
 }

 state(State.RX) {
 onEnter {
 def bytes = pdu.encode(
 type: CTS_PDU,
 duration: Math.round(rxInfo.duration*1000))
 phy << new TxFrameReq(
 to: rxInfo.from,
 type: Physical.CONTROL,
 protocol: PROTOCOL,
 data: bytes)
 after(rxInfo.duration + 2*MAX_PROP_DELAY) {
 setNextState(State.IDLE)
 }
 rxInfo = null
 }
 }

165

 state(State.BACKOFF) {
 onEnter {
 after(backoff) {
 setNextState(State.IDLE)
 }
 }
 onEvent(Event.SNOOP_RTS) {
 backoff = RTS_BACKOFF
 reenterState()
 }
 onEvent(Event.SNOOP_CTS) { info ->
 backoff = info.duration + 2*MAX_PROP_DELAY
 reenterState()
 }
 }

}

Do note that the above FSM includes a couple of details that were missing from the FSM diagram. Firstly,
we implement a random backoff before switching to the RTS state to minimize contention. Secondly, we
implement a retryCount counter to check the number of times a single ReservationReq has been tried. If it
exceeds MAX_RETRY, we discard it. Thirdly, we have a backoff variable that allows different backoff times
for different occasions. The variable is set each time, just before the state is changed to State.BACKOFF or
before the backoff state is re-entered.

The FSM uses a simple utility method to send out ReservationStatusNtf notifications:

void sendReservationStatusNtf(ReservationReq msg, ReservationStatus status) {
 send new ReservationStatusNtf(
 recipient: msg.sender,
 inReplyTo: msg.msgID,
 to: msg.to,
 from: addr,
 status: status)
}

Now the hard work is done. We initialize our agent by registering the MAC service, looking up and
subscribing to the PHYSICAL service (to transmit and receive PDUs), looking up our own address using
the NODE_INFO service, and starting the fsm behavior:

166

AgentID phy
int addr

void setup() {
 register Services.MAC
}

void startup() {
 phy = agentForService(Services.PHYSICAL)
 subscribe(phy)
 subscribe(topic(phy, Physical.SNOOP))
 add new OneShotBehavior({
 def nodeInfo = agentForService(Services.NODE_INFO)
 addr = get(nodeInfo, NodeInfoParam.address)
 })
 add(fsm)
}

Note that we subscribe to the topic(phy, Physical.SNOOP) in addition to phy. This allows us to snoop
RTS/CTS PDUs destined for other nodes. Also note that the address lookup is performed in a
OneShotBehavior to avoid having the agent to block while the node information agent is starting up.

Just like in the earlier MAC implementation, we have to respond to various requests defined by the MAC
service specifications:

Message processRequest(Message msg) {
 switch (msg) {
 case ReservationReq:
 if (msg.to == Address.BROADCAST || msg.to == addr)
 return new RefuseRsp(msg, 'Reservation must have a destination node')
 if (msg.duration <= 0 || msg.duration > maxReservationDuration)
 return new RefuseRsp(msg, 'Bad reservation duration')
 if (queue.size() >= MAX_QUEUE_LEN)
 return new RefuseRsp(msg, 'Queue full')
 queue.add(msg)
 fsm.restart() // tell fsm to check queue, as it may block if empty
 return new ReservationRsp(msg)
 case ReservationCancelReq:
 case ReservationAcceptReq:
 case TxAckReq:
 return new RefuseRsp(msg, 'Not supported')
 }
 return null
}

If we get a ReservationReq, we validate the attributes, add the request to our queue and return a
ReservationRsp. For other requests that we do not support, we simply refuse them.

If we receive PDUs from the physical agent, they come as RxFrameNtf messages via the processMessage()
method. For all PDUs with a protocol number that we use, we decode them. We trigger appropriate FSM
events in response to RTS and CTS PDUs -– RX_RTS and RX_CTS events for PDUs destined to us, and
SNOOP_RTS and SNOOP_CTS events for PDUs that we overhear:

167

void processMessage(Message msg) {
 if (msg instanceof RxFrameNtf && msg.protocol == PROTOCOL) {
 def rx = pdu.decode(msg.data)
 def info = [from: msg.from, to: msg.to, duration: rx.duration/1000.0]
 if (rx.type == RTS_PDU)
 fsm.trigger(info.to == addr ? Event.RX_RTS : Event.SNOOP_RTS, info)
 else if (rx.type == CTS_PDU)
 fsm.trigger(info.to == addr ? Event.RX_CTS : Event.SNOOP_CTS, info)
 }
}

Finally, we expose the parameters required by the MAC service specification:

List<Parameter> getParameterList() { // publish list of all exposed parameters
 return allOf(MacParam)
}

final int reservationPayloadSize = 0 // read-only
final int ackPayloadSize = 0 // read-only
final float maxReservationDuration = 65.535 // read-only

boolean getChannelBusy() { // considered busy if fsm is not IDLE
 return fsm.currentState.name != State.IDLE
}

float getRecommendedReservationDuration() { // recommended duration: one DATA packet
 return get(phy, Physical.DATA, PhysicalChannelParam.frameDuration)
}

We are done! You can find the full listing of the MySimpleHandshakeMac agent in Appendix D (and also in
the samples folder of your Unet simulator).

29.5. Testing our simple MAC with handshake
Let’s try out this MAC. The steps are similar to Section 29.2, but since the handshake requires MAC to be
running on all nodes, you will have to fire up the 2-node network and replace the default CSMA MAC
with MySimpleHandshakeMac on both nodes (node A and node B):

> container.kill mac
true
> container.add 'mac', new MySimpleHandshakeMac();
> mac
« MySimpleHandshakeMac »

[org.arl.unet.mac.MacParam]
 ackPayloadSize ⇒ 0
 maxReservationDuration ⇒ 65.535
 recommendedReservationDuration ⇒ 0.7
 reservationPayloadSize ⇒ 0

Since the handshaking involves exchange of PDUs between nodes, it is instructive to see the PDUs being
exchanged by subscribing to phy. You can make a reservation request on node A:

168

> subscribe phy
> mac << new ReservationReq(to: 31, duration: 3.seconds)
ReservationRsp:AGREE
phy >> TxFrameStartNtf:INFORM[type:CONTROL txTime:3631928985 txDuration:950]
phy >> RxFrameStartNtf:INFORM[type:CONTROL rxTime:3634151681]
phy >> RxFrameNtf:INFORM[type:CONTROL from:31 to:232 protocol:4 rxTime:3634151681 (3 bytes)]
mac >> ReservationStatusNtf:INFORM[to:31 from:232 status:START]
mac >> ReservationStatusNtf:INFORM[to:31 from:232 status:END]

We see that a CTS is transmitted (TxFrameStartNtf), then a RTS is received from node B (RxFrameStartNtf
and RxFrameNtf). The reservation starts as soon as the CTS is received, and it ends 3 seconds later. Exactly
as we wanted!

169

Part VI: Simulating underwater
networks

170

Chapter 30. Writing simulation scripts
We have been using simulations throughout the handbook, to demonstrate and test commands, scripts
and agents without having to set up a real Unet. But how exactly do we tell the simulator what we want
to simulate?

30.1. Integrated development environment
We have used the 2-node network simulation (bin/unet samples/2-node-network.groovy) umpteen times,
but how did the simulator know where the nodes were and what agents were running on each node?
That information must have been in the 2-node-network.groovy simulation script, so let’s take a look at
that script next.

While we could open the script in our favorite editor directly, let’s instead use the Unet IDE included
with UnetStack, as it provides development tools that we will be needing in our journey. To start the
Unet IDE:

$ bin/unet sim
Simulator IDE: http://localhost:8080/

This should open the IDE in your default browser:

Figure 11. Integrated development environment (IDE) for Unet simulator.

The IDE provides you with a fairly common 3-panel layout, with a file browser in the left panel, a
simulation shell at the bottom, and a file editor occupying most of the window. At the top, you see
several buttons. The key buttons to note are the  button that starts/stops simulations, the Map button
that shows the current simulated nodes on a map, the 'Logs' button that allows you to view simulation
logs, and a Shells dropdown that lists all the shells of simulated nodes. You can select any of the nodes
from the list to connect to the shell of that node. The Map and Shells buttons are activated only once a
simulation is running.

Load the 2-node-network.groovy simulation script from the samples folder in the file editor. Then press 
to run it.


You can either press the  button or type sim.run 'samples/2-node-network.groovy' to
run the simulation from the simulation shell panel.

In the shell panel, you’ll see:

2-node network

Node A: tcp://localhost:1101, http://localhost:8081/
Node B: tcp://localhost:1102, http://localhost:8082/

171

To access node A shell, either control-click the URL for node A shell (displayed on the simulation shell) or
select Node A (232) from the Shells dropdown menu. This will open the node A shell in a separate
browser tab. Once you have access to the shells for your node, you are on familiar ground, as you have
been working with numerous realtime simulations in previous chapters. Now, you can safely close the
shell tab for now and go back to the IDE tab. The shell tab can be reopened anytime you want.

Next, try out the Map button, and you’ll see the 2 nodes in our simulation on a map:

Figure 12. 2-node network simulation visualized using the simulator IDE.

This map doesn’t look like much, with just 2 nodes 1 km apart on a blue background. The 2-node
network simulation isn’t geolocated, so the map doesn’t have much to show. Let’s stop this simulation by
pressing the  button, and start the scripts/mission2013-network.groovy simulation instead.


You can either press the  button or type sim.stop in the simulation shell panel to stop
the currently running simulation.

Now open the Map, and you’ll get a much nicer map of the network deployed in southern Singapore
waters:

Figure 13. A network simulation visualized on a world map using the simulator IDE.

Clicking on each node shows some information about that node, and provides a link to opening that
node’s shell (if it has a shell agent running). In case of mobile nodes (Section 30.5), you’ll see the nodes
moving on the map.

30.2. 2-node network
Now that we know how to use the IDE, let’s stop the mission2013 network simulation and reopen the 2-
node network simulation in the file browser. Recall that we started off the previous section wanting to
study the 2-node-network.groovy simulation script in detail to see how it works. So let’s get down to it:

172

samples/2-node-network.groovy:

import org.arl.fjage.* ①

///
// display documentation

println ''' ②
2-node network

Node A: tcp://localhost:1101, http://localhost:8081/
Node B: tcp://localhost:1102, http://localhost:8082/
'''

///
// simulator configuration

platform = RealTimePlatform ③

// run the simulation forever
simulate { ④
 node 'A', location: [0.km, 0.km, -15.m], web: 8081, api: 1101, stack: "$home/etc/setup"
 node 'B', location: [1.km, 0.km, -15.m], web: 8082, api: 1102, stack: "$home/etc/setup"
}

① Import classes needed in the simulation script.

② Display documentation.

③ Tell the simulator that we want to run in realtime mode.

④ Describe the simulation specifying nodes names 'A' and 'B', their locations, web interface port
numbers, API port numbers and the default network stack to load on each node.

The simulation script is very simple. All it does is specify that we want to use the RealTimePlatform (since
we want to run a realtime simulation), and then define the two nodes in the simulation. Node attributes
such as node name, location, ports, and stack (agents to load) are specified when describing each node.

Let’s next take a look at the setup.groovy script that describes the stack to load on each node:

173

etc/setup.groovy:

import org.arl.fjage.Agent

boolean loadAgentByClass(String name, String clazz) { ①
 try {
 container.add name, Class.forName(clazz).newInstance()
 return true
 } catch (Exception ex) {
 return false
 }
}

boolean loadAgentByClass(String name, String... clazzes) { ②
 for (String clazz: clazzes) {
 if (loadAgentByClass(name, clazz)) return true
 }
 return false
}

loadAgentByClass 'arp', 'org.arl.unet.addr.AddressResolution'
loadAgentByClass 'ranging', 'org.arl.unet.phy.Ranging'
loadAgentByClass 'mac', 'org.arl.unet.mac.CSMA'
loadAgentByClass 'uwlink', 'org.arl.unet.link.ECLink', 'org.arl.unet.link.ReliableLink' ③
loadAgentByClass 'transport', 'org.arl.unet.transport.SWTransport'
loadAgentByClass 'router', 'org.arl.unet.net.Router'
loadAgentByClass 'rdp', 'org.arl.unet.net.RouteDiscoveryProtocol'
loadAgentByClass 'state', 'org.arl.unet.state.StateManager'

container.add 'remote', new org.arl.unet.remote.RemoteControl(cwd: new File(home, 'scripts'),
enable: false)
container.add 'bbmon', new org.arl.unet.bb.BasebandSignalMonitor(new File(home, 'logs/signals-
0.txt').path, 64)

① Helper function to load an agent given it’s class name.

② Helper function to load an agent from a list of class names, picking the first available class.

③ We use the second helper function to load ECLink if available (only premium stack), or ReliableLink as
a fallback (available in basic stack).

While this script might look complicated, what it does is quite simple. It loads the standard agents in the
network stack. The complicated bits in the script are mostly to handle errors, if certain agents are
unavailable (e.g. agents from the premium stack). We could use a much simpler script to load the stack,
if we wanted to avoid this complexity:

174

Simpler etc/setup.groovy:

container.add 'arp', new org.arl.unet.addr.AddressResolution()
container.add 'ranging', new org.arl.unet.phy.Ranging()
container.add 'mac', new org.arl.unet.mac.CSMA()
container.add 'uwlink', new org.arl.unet.link.ReliableLink()
container.add 'transport', new org.arl.unet.transport.SWTransport()
container.add 'router', new org.arl.unet.net.Router()
container.add 'rdp', new org.arl.unet.net.RouteDiscoveryProtocol()
container.add 'state', new org.arl.unet.state.StateManager()
container.add 'remote', new org.arl.unet.remote.RemoteControl(cwd: new File(home, 'scripts'), enable:
false)
container.add 'bbmon', new org.arl.unet.bb.BasebandSignalMonitor(new File(home, 'logs/signals-0.txt'
).path, 64)

This script just loads all the standard agents in the basic stack.

If you wanted to customize the stack in the simulation, you could specify a different script to setup the
stack, or provide a closure directly when defining the simulation:

simulate {
 node 'A', location: [0.km, 0.km, -15.m], web: 8081, api: 1101, stack: "$home/scripts/custom.groovy"
 node 'B', location: [1.km, 0.km, -15.m], web: 8082, api: 1102, stack: {
 // only load 3 agents on node B
 container.add 'arp', new org.arl.unet.addr.AddressResolution()
 container.add 'mac', new org.arl.unet.mac.CSMA()
 container.add 'uwlink', new org.arl.unet.link.ReliableLink()
 }
}


Recall that in Section 28.2, we developed our own EchoDaemon.groovy agent. If we
wanted to preload it in our 2-node network simulation, we can add container.add
'echo', new EchoDaemon() in the custom.groovy script or directly in the closure shown
above.

175

Simulated node properties

When defining a node, you can set many properties of the node:

address

Node address.

web

TCP/IP port number for the web interface. Each node should have a unique port number. By
default, for security reasons, the web interface is only accessible from your local machine. If
you wish for it to be accessible externally, you need to specify the web property as ['0.0.0.0',
port] where port is the port number.

shell

If the value of shell is true, a console shell is opened on the node. No more than one node in
the simulation should have a console shell. If the value of shell is numeric, it is treated as a
TCP/IP port number to make the shell accessible over. Each node should have a unique port
number. You can connect to the shell using nc or telnet.

api

TCP/IP port number for the API port. This port is used by the gateway API or fjåge slave
containers. Each node should have a unique port number.

location

Node location specified as a 3-tuple. The format of the location tuple is described in Section 5.6.

mobility

true if the node is mobile, false if it is static. The default is false, if mobility is not specified.

heading

Initial heading of the node (in case of mobile nodes). The heading is specified in degrees,
measured clockwise, north being 0.

stack

Filename of script to run, or a closure to execute, to load agents in the network stack.

model

Class to use for the NODE_INFO service. The NODE_INFO service for each node is normally
provided by the org.arl.unet.nodeinfo.NodeInfo agent class. This agent is loaded before the
stack is initialized, and therefore cannot be customized using the stack property.

30.3. Netiquette 3-node network
The 2-node-network.groovy script defined 2 nodes that were 1 km apart, but were not geolocated. Recall
from Section 5.6 that specifying a node origin allows us to geolocate the nodes on a map. The netq-
network.groovy simulation script does this:

176

samples/netq-network.groovy:

import org.arl.fjage.RealTimePlatform

///
// display documentation

println '''
Netiquette 3-node network

Node A: tcp://localhost:1101, http://localhost:8081/
Node B: tcp://localhost:1102, http://localhost:8082/
Node C: tcp://localhost:1103, http://localhost:8083/
'''

///
// simulator configuration

platform = RealTimePlatform // use real-time mode
origin = [1.216, 103.851] ①

simulate {
 node 'A', location: [121.m, 137.m, -10.m], web: 8081, api: 1101, stack: "$home/etc/setup"
 node 'B', location: [160.m, -232.m, -15.m], web: 8082, api: 1102, stack: "$home/etc/setup"
 node 'C', location: [651.m, 140.m, -5.m], web: 8083, api: 1103, stack: "$home/etc/setup"
}

① The specified origin (latitude, longitude) applies to all nodes in the simulation.

Starting the simulation and opening the map shows the nodes on the map, since the origin allows the
IDE to geolocate the nodes:

Figure 14. The 3-node network simulation visualized on a map using the simulator IDE.

The  icon on the map marks the origin location.

30.4. Mission 2013 network
The simulation script is written in Groovy, so you can include complex logic in the script , if you wish.
From this perspective, the mission2013-network.groovy script is instructive to look at:

177

samples/mission2013-network.groovy:

import org.arl.fjage.RealTimePlatform
import org.arl.unet.sim.channels.Mission2013a

///
// display documentation

println '''
MISSION 2013 network

'''
Mission2013a.nodes.each { addr ->
 println "Node $addr: tcp://localhost:${1100+addr}, http://localhost:${8000+addr}/"
}

///
// simulator configuration

platform = RealTimePlatform // use real-time mode
channel = [model: Mission2013a] ①
origin = [1.217, 103.743]

simulate {
 Mission2013a.nodes.each { addr -> ②
 node "$addr", location: Mission2013a.nodeLocation[addr], web: 8000+addr, api: 1100+addr, stack:
"$home/etc/setup"
 }
}

① The channel property of the simulation enables us to define details of the simulated physical channel
for the network. We will learn more about simulating channels in Chapter 32.

② Nodes can be created programatically by iterating over the list of nodes defined in the Mission2013a
class.

The Mission2013a class contains information about the MISSION 2013 experiment. The mission2013-
network.groovy simulation script uses this information to create simulated nodes at the correct locations,
and to define a channel model based on measurements during that experiment.

30.5. Node mobility
Nodes in a simulation may be mobile (e.g. autonomous underwater vehicles). Such nodes have motion
models associated with them, to provide appropriate mobility during the simulation:

// AUV-1 moving in a straight line at constant speed
def n1 = node 'AUV-1', location: [0, 0, 0], mobility: true
n1.motionModel = [speed: 1.mps, heading: 30.deg]

// AUV-2 moving in a circle (constant speed, constant turn rate)
def n2 = node 'AUV-2', location: [0, 0, 0], mobility: true
n2.motionModel = [speed: 1.mps, turnRate: 1.dps]

We can also define more complex motion models:

178

// AUV-3 moving in a lawnmower pattern
def n3 = node 'AUV-3', location: [-20.m, -150.m, 0], heading: 0.deg, mobility: true
n3.motionModel = MotionModel.lawnmower(speed: 1.mps, leg: 200.m, spacing: 20.m, legs: 10)

// AUV-4 moving as defined below, using time or duration
def n4 = node 'AUV-4', location: [-50.m, -50.m, 0], mobility: true
n4.motionModel = [
 [time: 0.minutes, heading: 60.deg, speed: 1.mps],
 [time: 3.minutes, turnRate: 2.dps, diveRate: 0.1.mps],
 [time: 4.minutes, turnRate: 0.dps, diveRate: 0.mps],
 [time: 7.minutes, turnRate: 2.dps],
 [time: 8.minutes, turnRate: 0.dps],
 [duration: 3.minutes, turnRate: 2.dps, diveRate: -0.1.mps],
 [duration: 1.minute, turnRate: 0.dps, diveRate: 0.mps]
]

We can even combine motion models:

def n5 = node 'AUV-5', location: [-20.m, -150.m, 0], heading: 0.deg, mobility: true

// dive to 30m before starting survey
n5.motionModel = [
 [duration: 5.minutes, speed: 1.mps, diveRate: 0.1.mps],
 [diveRate: 0.mps]
]

// then do a lawnmower survey
n5.motionModel += MotionModel.lawnmower(speed: 1.mps, leg: 200.m, spacing: 20.m, legs: 10)

// finally, come back to the surface and stop
n5.motionModel += [
 [duration: 5.minutes, speed: 1.mps, diveRate: -0.1.mps],
 [diveRate: 0.mps, speed: 0.mps]
]

Let’s put AUVs 1-4 together into a single simulation script:

179

auv-network.groovy

import org.arl.fjage.RealTimePlatform
import org.arl.unet.sim.MotionModel

platform = RealTimePlatform

simulate {
 def n1 = node 'AUV-1', location: [0, 0, 0], mobility: true
 n1.motionModel = [speed: 1.mps, heading: 30.deg]
 def n2 = node 'AUV-2', location: [0, 0, 0], mobility: true
 n2.motionModel = [speed: 1.mps, turnRate: 1.dps]
 def n3 = node 'AUV-3', location: [-20.m, -150.m, 0], heading: 0.deg, mobility: true
 n3.motionModel = MotionModel.lawnmower(speed: 1.mps, leg: 200.m, spacing: 20.m, legs: 10)
 def n4 = node 'AUV-4', location: [-50.m, -50.m, 0], mobility: true
 n4.motionModel = [
 [time: 0.minutes, heading: 60.deg, speed: 1.mps],
 [time: 3.minutes, turnRate: 2.dps, diveRate: 0.1.mps],
 [time: 4.minutes, turnRate: 0.dps, diveRate: 0.mps],
 [time: 7.minutes, turnRate: 2.dps],
 [time: 8.minutes, turnRate: 0.dps],
 [duration: 3.minutes, turnRate: 2.dps, diveRate: -0.1.mps],
 [duration: 1.minute, turnRate: 0.dps, diveRate: 0.mps]
]
}

Save this auv-network.groovy in your scripts folder and run it. Open the map, and watch your AUV nodes
move!

Figure 15. AUV node motion visualized using the simulator IDE.

180

Chapter 31. Discrete event simulation
Running simulations in realtime gives us an experience which is very similar to working with a real
Unet, as we have seen in earlier chapters. This is very useful when you want to interact with the
network manually, through a shell. However, as a network designer or protocol developer, you may
sometimes need to run simulations to see how the network performs over days or months, and maybe
run many such simulations, each with slightly different network settings or configuration. Doing this
with a realtime simulator is impractical, as a realtime simulation would take days or months to run. The
Unet simulator can be run in a discrete event mode, where the waiting time between events is fast-
forwarded to yield results worth hours or days of real time within minutes. In this chapter, we explore
how to use the disrete event mode for simulation of protocol performance.

31.1. ALOHA performance analysis
The hello world of the networking world is the ALOHA MAC protocol. The protocol is very simple:
transmit a frame as soon as data arrives, without worrying about whether any other node is
transmitting. While this behavior is straightforward to describe, simulating it accurately requires some
thought.

Let’s say we want to simulate a network with ALOHA MAC. On each node, we expect data to arrive
randomly, with a known average arrival rate. The total number of data "chunks" arriving per unit time
across the network is termed as offered load. As soon as a data chunk arrives, the node transmits it to a
randomly chosen destination node (other than itself). The number of successfully delivered data chunks
per unit time, across the entire network, is called the throughput. We are interested to study how the
throughput varies as a function of offered load.

ALOHA has been extensively studied in literature, and its theoretical performance is well known. In
order to simulate a network that can be compared against theory, we need to ensure that our simulation
matches the assumptions made in the theoretical derivations:

1. The random arrival process follows a Poisson distribution.

2. If two frames arrive at a receiver with some overlap in time, they collide and are lost. Neither frame
can be successfully decoded.

3. Each node is half-duplex, i.e., it cannot receive a frame while it is transmitting.

4. No frames are lost due to noise or channel effects such as multipath.

5. There is no propagation delay between nodes.

Assumptions 2 and 4 together form a model called the protocol channel model. We tell the simulator to
adopt this model:

channel.model = ProtocolChannelModel

Underwater acoustic modems are usually half-duplex, and the default modem model in the simulator is
the HalfDuplexModem, so we shouldn’t need to do anything special for assumption 3. However, the
HalfDuplexModem is smart enough to delay a transmission if another frame is being transmitted or
received by the node, to avoid losing the other frame. While this is usually a good thing to do, it will

181

https://en.wikipedia.org/wiki/ALOHAnet

violate assumption 3 and give us results that don’t agree with theory. To match the theoretical behavior,
we have to stop any ongoing transmission or reception, when new data arrives for transmission:

phy << new ClearReq() // stop ongoing transmission/reception
phy << new TxFrameReq(to: dst, type: DATA) // transmit a data frame to dst

The offered load and throughput are usually normalized by the number of frames that can be supported
by the channel per unit time. By setting the frame duration to be one second, we ensure that the
normalization factor is 1 (one packet can be transitted per second without collision). To do this, we set
up the simulated modem to have no header/preamble overheads, and exactly 1 second worth of data
that it can carry in a frame:

modem.dataRate = [2400, 2400].bps // arbitrary data rate
modem.frameLength = [2400/8, 2400/8].bytes // 1 second worth of data per frame
modem.headerLength = 0 // no overhead from header
modem.preambleDuration = 0 // no overhead from preamble
modem.txDelay = 0 // don't simulate hardware delays

 You can read more about modem models in Section 32.1.

A Poisson process (assumption 1) is easily simulated using the PoissonBehavior available in fjåge.
Assumption 5 can also be easily met by placing all nodes at the same location.

Now let’s put a first version of our script together to simulate a 4-node ALOHA network:

182

import org.arl.fjage.*
import org.arl.unet.*
import org.arl.unet.phy.*
import org.arl.unet.sim.*
import org.arl.unet.sim.channels.*

channel.model = ProtocolChannelModel // use the protocol channel model
modem.dataRate = [2400, 2400].bps // arbitrary data rate
modem.frameLength = [2400/8, 2400/8].bytes // 1 second worth of data per frame
modem.headerLength = 0 // no overhead from header
modem.preambleDuration = 0 // no overhead from preamble
modem.txDelay = 0 // don't simulate hardware delays

def nodes = 1..4 // list with 4 nodes
def load = 0.2 // offered load to simulate

simulate 2.hours, { // simulate 2 hours of elapsed time
 nodes.each { myAddr ->
 def myNode = node "${myAddr}", address: myAddr, location: [0, 0, 0]
 myNode.startup = { // startup script to run on each node
 def phy = agentForService(Services.PHYSICAL)
 def arrivalRate = load/nodes.size() // arrival rate per node
 add new PoissonBehavior((long)(1000/arrivalRate), { // avg time between events in ms
 def dst = rnditem(nodes-myAddr) // choose destination randomly (excluding self)
 phy << new ClearReq()
 phy << new TxFrameReq(to: dst, type: Physical.DATA)
 })
 }
 }
}

// display collected statistics
println([trace.txCount, trace.rxCount, trace.offeredLoad, trace.throughput])

The script is easy to understand. In a 2-hour long simulation, we iterate over the list of nodes, and create
each node at the origin. Each node adds a PoissonBehavior to generate random traffic at a rate
corresponding to the offered load setting. The parameter of the Poisson behavior is the average time
between events in milliseconds, which we compute based on the arrival rate. The destination for each
transmission is randomly chosen from the list of nodes excluding the transmitting node. Once the
simulation is completed, statistics are printed. The trace object is automatically defined by the simulator
to collect typically required statistics.


The rnditem(list) function allows a random item to be chosen from a list. Other
convenience functions related to random number generation include rnd(min, max)
which generates a uniformly distributed random number between min and max, and
rndint(n) which generates a uniformly distributed random number between 0 and n-1.

Open Unet IDE (bin/unet sim), create a new simulation script in the scripts folder, copy this code in, and
run it. Within a few seconds, you should see the results:

[1459, 984, 0.2026, 0.1367]
1 simulation completed in 2.817 seconds

Since this is a Monte-Carlo simulation driven by a random number generator, the statistics you see will

183

be similar, but not identical. A total of 1459 frames were transmitted, and 984 of them were successfully
received. The measured offered load was 0.2026, and the throughput was 0.1367.

Hang on a minute! The simulation was meant to run for 2 hours, but it finished in less than 3 seconds!!

That’s because we ran the simulation in a discrete event simulation mode (it is the default mode, if we
don’t set platform = RealTimePlatform). We could have explicitly set it (platform =

DiscreteEventSimulator), if we wanted. Now that we can run hours worth of simulations in seconds, we
can go ahead and measure ALOHA throughput at various load settings:

import org.arl.fjage.*
import org.arl.unet.*
import org.arl.unet.phy.*
import org.arl.unet.sim.*
import org.arl.unet.sim.channels.*

println '''
Pure ALOHA simulation
=====================

TX Count\tRX Count\tOffered Load\tThroughput
--------\t--------\t------------\t----------'''

channel.model = ProtocolChannelModel // use the protocol channel model
modem.dataRate = [2400, 2400].bps // arbitrary data rate
modem.frameLength = [2400/8, 2400/8].bytes // 1 second worth of data per frame
modem.headerLength = 0 // no overhead from header
modem.preambleDuration = 0 // no overhead from preamble
modem.txDelay = 0 // don't simulate hardware delays

def nodes = 1..4 // list with 4 nodes
trace.warmup = 15.minutes // collect statistics after a while

for (def load = 0.1; load <= 1.5; load += 0.1) {

 simulate 2.hours, { // simulate 2 hours of elapsed time
 nodes.each { myAddr ->
 def myNode = node "${myAddr}", address: myAddr, location: [0, 0, 0]
 myNode.startup = { // startup script to run on each node
 def phy = agentForService(Services.PHYSICAL)
 def arrivalRate = load/nodes.size() // arrival rate per node
 add new PoissonBehavior((long)(1000/arrivalRate), { // avg time between events in ms
 def dst = rnditem(nodes-myAddr) // choose destination randomly (excluding self)
 phy << new ClearReq()
 phy << new TxFrameReq(to: dst, type: Physical.DATA)
 })
 }
 }
 } // simulate

 // tabulate collected statistics
 println sprintf('%6d\t\t%6d\t\t%7.3f\t\t%7.3f',
 [trace.txCount, trace.rxCount, trace.offeredLoad, trace.throughput])

} // for

Other than the pretty printing to tabulate the output, you’ll see that we have added a trace.warmup time.
This is to ensure that we only collect statistics after the simulation has reached steady state (in this case,

184

after 15 minutes of simulation time).

A slightly beautified copy of the above code is available in the samples/aloha.groovy script. You can either
run that, or run the above code. You should see something like this output:

Pure ALOHA simulation
=====================

TX Count RX Count Offered Load Throughput
-------- -------- ------------ ----------
 614 525 0.068 0.058
 1228 962 0.137 0.107
 1871 1249 0.209 0.139
 2480 1407 0.277 0.156
 3093 1535 0.347 0.171
 3759 1616 0.421 0.180
 4273 1665 0.479 0.183
 4971 1599 0.558 0.178
 5540 1605 0.622 0.178
 6256 1532 0.702 0.170
 6940 1375 0.783 0.153
 7338 1407 0.826 0.156
 7992 1338 0.904 0.149
 8598 1282 0.972 0.142
 9394 1048 1.062 0.116

15 simulations completed in 102.494 seconds

As expected from the ALOHA protocol, the maximum throughput of about 0.18 is reached at an offered
load of about 0.5. We plot this against the theoretical ALOHA performance curve (y = x exp(-2x)) in
Figure 16.

Figure 16. Simulated and theoretical ALOHA performance.

185

31.2. Logs, traces and statistics
When a simulation is run, usually two files are produced.

31.2.1. Log file

The logs/log-0.txt file contains detailed text logs from the Java logging framework. Your agents and
simulation scripts may log additional information to this file using log.info() or log.fine() methods.
This provides a flexible and customizable way to log events in your simulation for later analysis.

A typical extract of the log file is shown below:

1569242004546|INFO|org.arl.unet.nodeinfo.NodeInfo@558:setAddress|Node address changed to 1
1569242004548|INFO|Script1@558:invoke|Created static node 1 (1) @ [0, 0, 0]
1569242004552|INFO|org.arl.unet.nodeinfo.NodeInfo@558:setAddress|Node address changed to 2
1569242004553|INFO|Script1@558:invoke|Created static node 2 (2) @ [0, 0, 0]
1569242004553|INFO|org.arl.unet.nodeinfo.NodeInfo@558:setAddress|Node address changed to 3
1569242004554|INFO|Script1@558:invoke|Created static node 3 (3) @ [0, 0, 0]
1569242004554|INFO|org.arl.unet.nodeinfo.NodeInfo@558:setAddress|Node address changed to 4
1569242004554|INFO|Script1@558:invoke|Created static node 4 (4) @ [0, 0, 0]
1569242004555|INFO|Script1@558:invoke| --- BEGIN SIMULATION #1 ---
0|INFO|org.arl.unet.sim.SimulationContainer@558:init|Initializing agents...
0|INFO|org.arl.unet.sim.SimulationAgent/1@561:invoke|Loading simulator : SimulationAgent
0|INFO|org.arl.unet.nodeinfo.NodeInfo/1@560:init|Loading agent node v3.0
0|INFO|org.arl.unet.sim.HalfDuplexModem/1@559:init|Loading agent phy v3.0
 :
 :
5673|INFO|org.arl.unet.sim.SimulationAgent/4@570:call|TxFrameNtf:INFORM[type:DATA txTime:2066947222]
6511|INFO|org.arl.unet.sim.SimulationAgent/3@567:call|TxFrameNtf:INFORM[type:DATA txTime:1157370743]
10919|INFO|org.arl.unet.sim.SimulationAgent/4@570:call|TxFrameNtf:INFORM[type:DATA txTime:2072193222

Note that the timestamp (first column) changes from the clock time to discrete event time when the
simulation starts, and switches back to clock time when the simulation ends.

31.3. Trace files

31.4. JSON trace file
Since UnetStack 3.3.0, the default trace file is stored in a rich JSON format.

When running a simulation, a JSON trace file logs/trace.json is automatically generated. This file
contains a detailed trace for every event in the network stack, on each node. You can even enable trace
file generation on real modems and other Unet nodes (using EventTracer.enable()), and later combine
the traces from multiple nodes to analyze network protocol operation and performance.

A small extract from a typical trace file is shown below:

186

{"version": "1.0","group":"EventTrace","events":[
 {"group":"SIMULATION 1","events":[
 {"time":1617877446718,"component":"arp::org.arl.unet.addr.AddressResolution/B","threadID":"0bfb305d-
4920-4df0-af95-
5282b048b5ec","stimulus":{"clazz":"org.arl.unet.addr.AddressAllocReq","messageID":"0bfb305d-4920-4df0-
af95-
5282b048b5ec","performative":"REQUEST","sender":"node","recipient":"arp"},"response":{"clazz":"org.arl.une
t.addr.AddressAllocRsp","messageID":"3e421e28-89ca-44ec-bc65-
16cc404d3703","performative":"INFORM","recipient":"node"}},
 {"time":1617877446718,"component":"arp::org.arl.unet.addr.AddressResolution/A","threadID":"04f5b1b9-
9178-4e27-aae7-
e2a0c4ffcd89","stimulus":{"clazz":"org.arl.unet.addr.AddressAllocReq","messageID":"04f5b1b9-9178-4e27-
aae7-
e2a0c4ffcd89","performative":"REQUEST","sender":"node","recipient":"arp"},"response":{"clazz":"org.arl.une
t.addr.AddressAllocRsp","messageID":"e0fe806d-625d-4261-b24c-
6655b90cc06a","performative":"INFORM","recipient":"node"}},
 :
 :
]}
]}

The trace is organized into a hierarchy of groups, each describing a simulation run or the execution of
specific commands. A group consists of a sequence of events, with each event providing information on
time of event, component (agent running on a node), thread ID, stimulus and response. The stimulus is
typically a message received from another agent, and response a message sent to another agent. The
thread ID ties multiple events, potentially across multiple agents and nodes, but with the same root
cause together.

An experimental automated trace analysis tool can be used to produce sequence diagrams from JSON
trace files.

Integrating the event tracing framework into your own agents is simple. All you need to do is to wrap
messages that you generate in response to a stimulus with a trace() call. Some examples:

send trace(stimulus, new DatagramDeliveryNtf(stimulus))
request trace(stimulus, req), timeout

31.5. Legacy trace file
The legacy trace file format is similar to the NS2 NAM trace. Since UnetStack 3.3.0, this format is no
longer the default, but can be enabled easily in your simulation script if you need it:

trace.open(new File(home, 'logs/trace.nam'))

The trace file contains information about all packet creation, transmission, reception and drop events. It
also contains details of node motion. The tracer also computes basic statistics including queued packet
count, transmitted packet count, received packet count, dropped packet count, offered load, actual load,
average packet latency and normalized throughput. An extract from the trace file is shown below:

187

https://github.com/org-arl/unet-contrib/tree/master/tools/viztrace

BEGIN SIMULATION 1
n -t 8.005000 -s 3 -x 0.000000 -y 0.000000 -Z 0.000000 -a 3
+ -t 8.005000 -s 3 -d 2 -i 40839989 -p 0 -x {3.0 2.0 -1 ------- null}
- -t 8.005000 -s 3 -d 2 -i 40839989 -p 0 -x {3.0 2.0 -1 ------- null}
n -t 8.005000 -s 1 -x 0.000000 -y 0.000000 -Z 0.000000 -a 1
n -t 8.005000 -s 2 -x 0.000000 -y 0.000000 -Z 0.000000 -a 2
n -t 8.005000 -s 4 -x 0.000000 -y 0.000000 -Z 0.000000 -a 4
r -t 9.005000 -s 3 -d 2 -i 40839989 -p 0 -x {3.0 2.0 -1 ------- null}
r -t 9.005000 -s 3 -d 1 -i 40839989 -p 0 -x {3.0 2.0 -1 ------- null}
r -t 9.005000 -s 3 -d 4 -i 40839989 -p 0 -x {3.0 2.0 -1 ------- null}
+ -t 42.042000 -s 1 -d 2 -i 254433913 -p 0 -x {1.0 2.0 -1 ------- null}
- -t 42.042000 -s 1 -d 2 -i 254433913 -p 0 -x {1.0 2.0 -1 ------- null}
r -t 43.042000 -s 1 -d 2 -i 254433913 -p 0 -x {1.0 2.0 -1 ------- null}
r -t 43.042000 -s 1 -d 4 -i 254433913 -p 0 -x {1.0 2.0 -1 ------- null}
r -t 43.042000 -s 1 -d 3 -i 254433913 -p 0 -x {1.0 2.0 -1 ------- null}
 :
 :
d -t 584.925000 -s 1 -d 4 -i 259068939 -p 0 -x {1.0 4.0 -1 ------- null} -y CLEAR
+ -t 584.925000 -s 4 -d 1 -i -2069119004 -p 0 -x {4.0 1.0 -1 ------- null}
- -t 584.925000 -s 4 -d 1 -i -2069119004 -p 0 -x {4.0 1.0 -1 ------- null}
d -t 584.925000 -s 4 -d 1 -i -2069119004 -p 0 -x {4.0 1.0 -1 ------- null} -y COLLISION
d -t 584.925000 -s 4 -d 2 -i -2069119004 -p 0 -x {4.0 1.0 -1 ------- null} -y COLLISION
d -t 584.925000 -s 4 -d 3 -i -2069119004 -p 0 -x {4.0 1.0 -1 ------- null} -y COLLISION
d -t 585.747000 -s 1 -d 2 -i 259068939 -p 0 -x {1.0 4.0 -1 ------- null} -y BAD_FRAME
d -t 585.747000 -s 1 -d 3 -i 259068939 -p 0 -x {1.0 4.0 -1 ------- null} -y BAD_FRAME
 :
 :
STATS: q=621, t=621, r=506, d=115, O=0.099, L=0.099, D=0.000, T=0.080
END SIMULATION 1

Lines starting with n log node locations/motion. Lines starting with + denote packet arrival into the
transmit queue. Lines starting with - log packet removal from the transmit queue, i.e., transmission.
Lines starting with r denote packet reception (or overhearing). Lines starting with d log packet drops,
and specify a reason for the drop. CLEAR indicates a packet transmission/reception abort due to a
ClearReq request. COLLISION indicates that the packet was dropped because the node was busy receiving
or transmitting another packet. BAD_FRAME indicates that the packet was corrupted (possibly due to
interference from a colliding packet).

For more details on the trace file format, see NS2 NAM trace format.


While the trace provides a simple file format and collects statistics for you, the events
monitored by the legacy trace are currently limited to PHYSICAL service events. If you
need to monitor or log events from other agents, you would want to use the JSON trace
file.

188

http://nsnam.sourceforge.net/wiki/index.php/NS-2_Trace_Formats

Customizing your trace file

The trace can be configured in the simulation script. By default, the trace uses the NamTracer class
to create a logs/trace.nam file:

trace = new NamTracer()
trace.open('logs/trace.nam')

An alternate class extending the Tracer abstract class can be specified, if you wish to write your
own advanced custom tracer.

189

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/sim/NamTracer.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/sim/Tracer.html

Chapter 32. Modems and channel models
In Chapter 30 and Chapter 31, we learned how to simulate Unets with many nodes, using a single
computer. In fact, we have been using simulations throughout the handbook. In a simulated Unet, most
agents are identical to the agents running in nodes on a real Unet. However, since the communication in
a simulated Unet does not use a modem in water, we need a model for how a real modem behaves.

32.1. Modem models
A modem usually provides the PHYSICAL service (and optionally, the BASEBAND service). In a
simulation, we need a simulated modem to provide these services with behaviors as close to reality as
possible. The agent that models the modem behavior is called a modem model. The Unet simulator comes
with the HalfDuplexModem model that can be customized to emulate various underwater acoustic
modems.

Since the HalfDuplexModem is the default modem model, we don’t need to explicitly specify it. But if we
wanted to, we could do it in the simulation script:

modem = [model: org.arl.unet.sim.HalfDuplexModem]


Some modem manufacturers may provide you with a modem model that more
accurately matches the behaviors of their modem. This can be useful when simulating
networks with modems from specific vendors.

We can specify properties that control the behavior of the modem. You can either specify them while
declaring the modem:

modem = [
 model: org.arl.unet.sim.HalfDuplexModem,
 dataRate: [800.bps, 2400.bps],
 frameLength: [16.bytes, 64.bytes],
 powerLevel: [0.dB, -10.dB],
 preambleDuration: 5.ms
]

or later, by assigning the properties individually:

modem.dataRate = [800.bps, 2400.bps]
modem.frameLength = [16.bytes, 64.bytes]
modem.powerLevel = [0.dB, -10.dB]
modem.preambleDuration = 5.ms

Indexed properties dataRate, frameLength, maxFrameLength, janus and powerLevel are specified as 3-tuples,
with the first entry corresponding to the CONTROL channel, the second for the DATA channel, and the
third for the JANUS frame type. If JANUS support is not required, the properties may be specified as 2-
tuples.

190

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/sim/HalfDuplexModem.html



If you run a realtime simulation with modem.dataRate = [800.bps, 2400.bps], connect to
a node’s shell, and then type in phy[CONTROL].dataRate, you may be surpirsed to see a
much lower data rate (436 bps in this example). The 800 bps is the signaling rate, and
exludes overheads from preamble and headers. The 436 bps is the effective average
data rate across the frame, and includes all overheads.

Short descriptions and default values of these properties are shown below:

modem.dataRate = [256, 1024, 80]

Communication link data rate (bps).

modem.frameLength = [24, 64, 8]

Default frame length (bytes).

modem.maxFrameLength = [128, 512, 128]

Maximum frame length (bytes)

modem.janus = [false, false, true]

Support for JANUS frames.

modem.powerLevel = [-10, -10, -10]

Transmit power level (dB re refPowerLevel).

In addition to the above indexed properties, several other properties control the modem behavior:

modem.signalPowerLevel = -10

Transmit power level (dB re refPowerLevel) for baseband signals.

modem.preambleDuration = 0.2

Frame detection preamble duration (s).

modem.headerLength = 8

Frame header length (bytes).

modem.timestampLength = 6

Timestamp length (bytes), for timestamped frames.

modem.txDelay = 0.05

Transmission delay when switching from receive to transmit mode (s).

modem.timestampedTxDelay = 1.0

Transmission delay when scheduling transmission of a timestamped packet (s).

modem.maxPowerLevel = 0

Maximum allowable transmit power level (dB re refPowerLevel).

modem.minPowerLevel = -96

Minimum allowable transmit power level (dB re refPowerLevel).

modem.refPowerLevel = 185

Reference transmit power level (dB re µPa @ 1m).

191

modem.rxSensitivity = -200

Reference receive sensitivity (dB re µPa).

modem.carrierFrequency = 12000

Carrier frequency (Hz).

modem.basebandRate = 12000

Baseband sampling rate (samples/second).

modem.basebandRxDuration = 1.0

Baseband reception duration (s).

modem.maxSignalLength = 65536

Maximum allowable baseband signal length.

A modem model simulates the half-duplex nature of the modem, propagation delay, interference, packet
detection and packet loss. In order to do this accurately, it uses a channel model.

32.2. Channel models
Channel models implement the ChannelModel interface. The default channel model is the
BasicAcousticChannel, but can be reconfigured in the simulation script. Again, channel models can use
either syntax:

channel = [
 model: org.arl.unet.sim.channels.ProtocolChannelModel,
 communicationRange: 3000.m,
 pDetection: 0.9,
 pDecoding: 0.8
]

or

channel.model = org.arl.unet.sim.channels.ProtocolChannelModel
channel.communicationRange = 1000.m
channel.pDetection = 0.9
channel.pDecoding = 0.8

The properties supported by a channel model depend on the specifics of that model. Let us next look at a
few channel models that come with the Unet simulator.

32.2.1. Protocol channel model

The protocol channel model (ProtocolChannelModel) is the simplest of the channel models available in the
Unet simulator. Although simple, it captures important first-order effects such as propagation delay,
limited communication range, interference range, and collisions. It also captures the probabilistic nature
of the channel. It therefore serves as a good first order approximation that is also amenable to
mathematical analysis.

The protocol channel model is parametrized by a sound speed c, communication range Rc, detection

192

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/sim/ChannelModel.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/sim/channels/ProtocolChannelModel.html

range Rd, an interference range Ri, probability of detection pd, and a probability of decoding pc.
Successful communication is possible at a range R ≤ Rc with a probability pd × pc. At a range Rc < R ≤
Rd, a frame may be detected with probability pd, but not successfully decoded. At any range R ≤ Ri, a
frame interferes with another frame that is being received at the same time, and causes a collision. Both
frames are lost (not successfully decoded) during a collision. At a range R > Ri, a frame is not detected
and does not interfere with other frames.

To select the protocol model, the simulation script must explicitly set it as the channel.model. The
parameters of the model can be configured in the simulation script. The configuration of the channel
with default parameter values is shown below:

import org.arl.unet.sim.channels.*

channel.model = org.arl.unet.sim.channels.ProtocolChannelModel

channel.soundSpeed = 1500.mps // c
channel.communicationRange = 2000.m // Rc
channel.detectionRange = 2500.m // Rd
channel.interferenceRange = 3000.m // Ri
channel.pDetection = 1 // pd
channel.pDecoding = 1 // pc

32.2.2. Basic acoustic channel model

The basic acoustic channel model (BasicAcousticChannel) is the default channel model in the simulator. It
provides a good balance between accuracy, applicability and simulation speed. The model is composed
of two parts: an acoustic model (UrickAcousticModel) based on average transmission loss, and a
communication model (BPSKFadingModel) based on high time-bandwidth product detection preamble and
binary phase shift keying (BPSK) communication in a Rician or Rayleigh fading channel.

Urick acoustic model

The acoustic model is parametrized by carrier frequency f, bandwidth B, spreading loss factor α, water
temperature T°C, salinity S ppt, noise power spectral density level N0 dB re µPa/√Hz and water depth d.
The default values are shown below:

import org.arl.unet.sim.channels.*

channel.model = BasicAcousticChannel

channel.carrierFrequency = 25.kHz // f
channel.bandwidth = 4096.Hz // B
channel.spreading = 2 // α
channel.temperature = 25.C // T
channel.salinity = 35.ppt // S
channel.noiseLevel = 60.dB // N0
channel.waterDepth = 20.m // d

The acoustic model automatically computes the sound speed c [Mackenzie, JASA, 1981], transmission
loss TL [Urick 3rd ed, p105-111] and total noise level NL. The total signal-to-noise ratio is then given by SNR
= SL - TL - NL, where SL is the source level of the transmission in dB re μPa @ 1m.

193

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/sim/channels/BasicAcousticChannel.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/sim/channels/UrickAcousticModel.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/sim/channels/BPSKFadingModel.html

BPSK fading model

The fading communication model uses the above SNR to simulate detection and successful decoding. The
model is parametrized by the Rician fading parameter K, fast/slow fading, acceptable probability pfa of
false alarm during detection, and a processing gain G. The default values are shown below:

channel.ricianK = 10 // K
channel.fastFading = true // fast/slow fading
channel.pfa = 1e-6 // pfa
channel.processingGain = 0.dB // G

For a detection preamble of duration t seconds and bandwidth B, we have an effective SNR’ = SNR + 10
log(Bt) after pulse compression. We assume Rician fading (or Rayleigh fading if K = 0) and Gaussian
noise such that the average SNR is SNR’ to simulate detection.

For the BPSK communication signal with data rate D bits/second, we compute Eb/N0 = SNR + 10 log(B/D)
+ G. We then simulate bit errors assuiming Rician fading (or Rayleigh fading if K = 0) and Gaussian noise.
If fast fading is enabled, each bit generates an independent realization for the Rician fading variate. If
fast fading is disabled, the entire frame uses a single realization of the Rician fading variate. If all bits
are successful, the frame is successfully decoded. If any bit is in error, the frame is deemed to have failed
at decoding.

32.2.3. MISSION 2012 and 2013 channel models

Although channel modeling can provide useful approximations to an underwater channel, there is no
real substitute to experimenting at sea. The MISSION 2012 and MISSION 2013 experiments were
conducted over several weeks in October 2012 and November 2013 in Singapore waters. Extensive
channel measurements were made between Unet nodes deployed during the experiment. These
measurements allow us to estimate packet detection probabilities and packet error probabilities on
various network links. Although these probabilities are generally time-varying, we can estimate
instantaneous probabilities from measurements over a short interval during which the environmental
conditions are relatively stable. These can be used to generate a protocol channel model that accurately
models the channel between the nodes during the experiment. Any protocol simulation using this model
then shall accurately predict what would have happened if the protocol was tested at sea during the
experiment. This may be a good way to benchmark protocols in realistic deployment conditions.

To use the Mission2012a model for simulation, set the appropriate channel model and node
addresses/locations in the simulation script:

import org.arl.unet.sim.channels.*

channel.model = Mission2012a

simulate {
 Mission2012a.nodes.each { addr ->
 node "P$addr", address: addr, location: Mission2012a.nodeLocation[addr]
 }
}

The Mission2013a and Mission2013b models are used in a similar way.

194

https://arl.nus.edu.sg/twiki6/pub/ARL/BibEntries/ChitreOceans13.pdf
https://arl.nus.edu.sg/twiki6/pub/ARL/BibEntries/asilomar2014.pdf
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/sim/channels/Mission2012a.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/sim/channels/Mission2013a.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/sim/channels/Mission2013b.html


We have already been using the Mission2013a channel model when using the
samples/mission2013-network.groovy simulation in Section 6.1. You may wish to take a
look at the simulation script now, to understand how it works.

32.2.4. Developing custom channel models

While the above channel models meet the simulation needs for many applications, custom channel
models may be developed to meet special research needs. Although developing and testing a model from
scratch can be a daunting task, the ProtocolChannelModel and the AbstractAcousticChannel classes provide
excellent starting points to customize the channel models. In this section, we see how each of the classes
can be used to create custom channels.

Extending the ProtocolChannelModel

The ProtocolChannelModel can be customized to provide per-link detection and decoding probabilities.
The Mission2012a and Mission2013a models do exactly this. To illustrate how this is done, let us take a look
at the following code sample:

195

https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/sim/channels/ProtocolChannelModel.html
https://unetstack.net/javadoc/3.3/index.html?org/arl/unet/sim/channels/AbstractAcousticChannel.html

import org.arl.unet.sim.*
import org.arl.unet.sim.channels.ProtocolChannelModel

class Mission2012Channel extends ProtocolChannelModel {

 static final def nodes = [21, 22, 27, 28, 29]
 static final def nodeLocation = [
 21: [0, 0, -5],
 22: [398, -105, -18],
 27: [-434, -499, -12],
 28: [-32, 279, -20],
 29: [-199, -307, -12]
]
 static def pNoDetect = [
 [0, 0.047, 0.095, 0.026, 0.056],
 [0.032, 0, 0.228, 0.139, 0.081],
 [0.047, 0.174, 0, 0.025, 0.011],
 [0.019, 0.060, 0.040, 0, 0.420],
 [0.026, 0.018, 0.009, 0.048, 0]
]
 static def pNoDetectOrDecode = [
 [0, 0.157, 0.643, 0.197, 0.239],
 [0.184, 0, 0.870, 0.639, 0.435],
 [0.326, 0.826, 0, 0.975, 0.023],
 [0.038, 0.160, 0.760, 0, 0.900],
 [0.070, 0.070, 0.018, 0.871, 0]
]

 float getProbabilityDetection(Reception rx) {
 int from = nodes.indexOf(rx.from)
 int to = nodes.indexOf(rx.address)
 if (from < 0 || to < 0) return 0
 return 1-pNoDetect[from][to]
 }

 float getProbabilityDecoding(Reception rx) {
 int from = nodes.indexOf(rx.from)
 int to = nodes.indexOf(rx.address)
 if (from < 0 || to < 0) return 0
 return (1-pNoDetectOrDecode[from][to])/(1-pNoDetect[from][to])
 }

}

The nodes during the MISSION 2012 experiment have addresses 21, 22, 27, 28 and 29. The node locations
and inter-node detection/decoding probabilities are measured and tabulated in the model. The model
uses these measurements to simulate packet loss.

Extending the AbstractAcousticChannel

The AbstractAcousticChannel class provides a framework for acoustic simulation channels, including
functionality for collision detection. The BasicAcousticChannel class extends the AbstractAcousticChannel
class and provides implementation for an acoustic model (UrickAcousticModel) and a communication
model (BPSKFadingModel):

196

class BasicAcousticChannel extends AbstractAcousticChannel {
 @Delegate UrickAcousticModel acoustics = new UrickAcousticModel(this)
 @Delegate BPSKFadingModel comms = new BPSKFadingModel(this)
}

To customize an acoustic channel model, one may extend or replace the acoustic or communication
models. For example, if we wish to have a deep sea noise model where the noise power was a function of
a new parameter seaState, we could extend the UrickAcousticModel:

import org.arl.unet.sim.channels.UrickAcousticModel

class MyAcousticModel extends UrickAcousticModel {

 // map of sea state to noise power (dB re uPa^2/Hz)
 private final def noiseLevel = [0: 20, 1: 30, 2: 35, 3: 40, 4: 42, 5: 44, 6: 46]

 // sea state parameter
 float seaState = 2

 double getNoisePower() {
 return Math.pow(10, noiseLevel[seaState]/10) * model.bandwidth
 }

}

and then replace the BasicAcousticChannel model with out own version:

import org.arl.unet.sim.channels.*

class MyAcousticChannel extends AbstractAcousticChannel {
 @Delegate UrickAcousticModel acoustics = new MyAcousticModel(this)
 @Delegate BPSKFadingModel comms = new BPSKFadingModel(this)
}

Similarly, the communication model can be extended or replaced too.

197

Appendices

198

Appendix A: FAQs and resources

A.1. Frequently asked questions (FAQs)
• What’s new in UnetStack 3.1?

• Can I use UnetStack with IntelliJ IDEA?

• How do I write a modem driver for my modem?

• Can I use UnetStack to localize underwater nodes?

• How do I exploit spatial diversity across multiple Unet nodes?

A.2. Useful resources
• Unet blog articles — take a look, there are many cool articles here!

• Unet community contributions — explore what others have been doing, and contribute back!

• UnetStack discussions & support on StackOverflow

A.3. Quick links
• UnetStack homepage

• UnetStack API reference

• fjåge documentation

• fjåge API reference

199

https://blog.unetstack.net/whats-new-in-UnetStack3.1
https://blog.unetstack.net/using-idea-with-unetstack
https://blog.unetstack.net/developing-modem-drivers-for-unetstack
https://blog.unetstack.net/on-underwater-localization-using-unetstack
https://blog.unetstack.net/exploting-spatial-diversity-using-unetstack3
https://blog.unetstack.net
https://contrib.unetstack.net/
https://support.unetstack.net/
https://www.unetstack.net
https://unetstack.net/javadoc/3.3/index.html?
https://fjage.readthedocs.io/en/latest
https://org-arl.github.io/fjage/javadoc/index.html?

Appendix B: List of services
The following services are currently defined in UnetStack:

Short name Fully qualified name Description Read…

DATAGRAM org.arl.unet.Services.DATAG
RAM

Send and receive datagrams Chapter 14

PHYSICAL org.arl.unet.Services.PHYSI
CAL

Physical layer Chapter 15

BASEBAND org.arl.unet.Services.BASEB
AND

Arbitrary waveform transmission &
recording

Chapter 16

RANGING org.arl.unet.Services.RANGI
NG

Ranging & synchronization Chapter 17

NODE_INFO org.arl.unet.Services.NODE_
INFO

Node & network information Chapter 18

ADDRESS_RE
SOLUTION

org.arl.unet.Services.ADDRE
SS_RESOLUTION

Address allocation & resolution Chapter 19

LINK org.arl.unet.Services.LINK Datagram transmission over a single hop Chapter 21

MAC org.arl.unet.Services.MAC Medium access control Chapter 20

ROUTING org.arl.unet.Services.ROUTI
NG

Routing of datagrams over a multihop
network

Chapter 22

ROUTE_MAIN
TENANCE

org.arl.unet.Services.ROUTE
_MAINTENANCE

Discovery & maintenance of routes in a
multihop network

Chapter 22

TRANSPORT org.arl.unet.Services.TRANS
PORT

Datagram transmission over a multihop
network

[Transport
and
reliability]

REMOTE org.arl.unet.Services.REMOT
E

Remote command execution, text
messaging & file transfer

Chapter 24

STATE_MAN
AGER

org.arl.unet.Services.STATE
_MANAGER

State persistence across node reboots Chapter 25

SCHEDULER org.arl.unet.Services.SCHED
ULER

Sleep-wake scheduling for energy
management

Chapter 26

SHELL org.arl.fjage.shell.Service
s.SHELL

Commmand execution & file management
services

Chapter 27

200

Appendix C: Command reference

C.1. fjåge commands

shell — basic shell commands

• help — provide help on a specified topic

Usage:

help [topic]

Examples:

help // get help index
help shell // get help on 'shell'
help('shell') // alternative syntax

• ps — list all the agents

• services — list all services provided by agents

• who — display list of variables in workspace

• shutdown — shutdown the local platform

• run — run a Groovy script

Scripts are stored in a folder defined by the 'scripts' variable in the workspace. If no such variable is
defined, they are in the current folder.

Examples:

run 'myscript' // run a script called myscript.groovy
myscript // alternative syntax for running myscript
run 'res://myscript.groovy' // run a script from resources (in jar)
run 'cls://myscript' // run a precompiled script from class

• println — display message on console

Usage:

println output, [type]

Examples:

println 'hello there!'
println 'that failed!', org.arl.fjage.shell.OutputType.ERROR

201

• href — make a clickable URL (on terminals that support URLs)

Usage:

href(url)
href(url, text)

Examples:

println href('http://www.google.com')
println href('http://www.google.com', 'Search...')

• delay — delay execution by the specified number of milliseconds

Example:

delay 1000 // delay for 1000 ms

• logLevel — set loglevel (optionally for a named logger)

Usage:

logLevel [name],level

Examples:

logLevel INFO // set loglevel to INFO
logLevel 'org.arl', ALL // set loglevel for logger org.arl to ALL

• subscribe — subscribe to notifications from a named topic

Examples:

subscribe topic('MyTopic') // subscribe to notifications from MyTopic
subscribe agent('abc') // subscribe to notifications from agent abc

• unsubscribe — unsubscribe from notifications for a named topic

Examples:

unsubscribe topic('MyTopic') // unsubscribe notifications from MyTopic
unsubscribe agent('abc') // unsubscribe notifications from agent abc

• export — add specified package/classes to list of default imports

Examples:

202

export 'org.arl.fjage.*' // import package org.arl.fjage
export 'mypackage.MyClass' // import class mypackage.MyClass

At the shell prompt (but not in a script), export can be abbreviated to import. For example:

import org.arl.fjage.* // import package org.arl.fjage

• agent — return an agent id for the named agent

Usage:

agent(name)

Example:

a = agent('shell')

• agentForService — find an agent id providing the specified service

Examples:

a = agentForService Services.SHELL // find agents providing shell service

• agentsForService — get a list of all agent ids providing a service

Examples:

a = agentsForService Services.SHELL // list all agents providing a service

• send — send the given message

Examples:

send new Message(agent('shell')) // send a message to agent shell

• request — send the given request and wait for a response

Usage:

request req,[timeout]

Examples:

rsp = request req // send req and wait for response for default timeout
rsp = request req,100 // send req and wait for response for 100 ms

203

• receive — wait for a message

Usage:

receive [filter], [timeout]
receive [msg], [timeout]

Examples:

msg = receive // get any message with default timeout
msg = receive 100 // get any message within 100 ms
msg = receive req // get a response message for request req
msg = receive A // get message that of class A
msg = receive { it instanceof A } // get message that of class A
msg = receive req // get message response to req

• input — get user input

Usage:

input [prompt], [hide]

Examples:

name = input('What is your name?') // prompt user and get input
secret = input('Secret?', true) // hide input after entering

C.2. Transport commands

transport — access to transport service

Examples:

transport // access parameters
transport.maxRetries = 5 // set maximum retries for reliable delivery
transport << new DatagramReq(to: 2, data: [1,2,3], reliability: true)
 // send reliable datagram

Parameters:

• transport.MTU — maximum data transfer size

• transport.RTU — recommended data transfer size

Commands:

• abort — abort all transport datagram transfers

204

Example:

abort // abort ongoing transfers

C.3. Baseband commands

bb — access to baseband service

Examples:

bbrec 1000 // record 1000 baseband signals
bbtx sig // transmit baseband signal "sig"
bb.carrierFrequency // check carrier frequency
bb.maxSignalLength // check max signal length (samples)

Parameters:

• bb.carrierFrequency — carrier frequency (Hz)

• bb.basebandRate — baseband sampling rate (Hz)

• bb.maxPreambleID — maximum preamble ID

• bb.preambleDuration — preamble duration in seconds

• bb.maxSignalLength — baseband signal length (samples)

Commands:

• bbrec — make a baseband recording

Examples:

bbrec 1000 // record 1000 baseband signals
bbrec 1000, 87897287 // schedule a recording at given PHY time

• bbtx — transmit a baseband signal

Examples:

bbtx sig // transmit complex baseband signal
bbtx sig, 87897287 // schedule a transmission at given PHY time

• pbtx — transmit a passband signal sampled at 8 x basebandRate

Examples:

pbtx sig // transmit real passband signal
pbtx sig, 87897287 // schedule a transmission at given PHY time

205

• cw — create a tonal signal with unit amplitude

Examples:

cw(10000, 0.5) // 0.5 second 10 kHz baseband tonal
cw(15000, 0.2, 0) // 0.2 second 15 kHz passband tonal

• sweep — create a linear sweep with unit amplitude

Examples:

sweep(10000, 12000, 0.5) // 0.5 second baseband sweep from 10-12 kHz
sweep(10000, 12000, 0.5, 0) // 0.5 second passband sweep from 10-12 kHz

• wav — load a wav file

Examples:

wav 'scripts/test.wav' // loads a wav file

• save — save signal to a file in the scripts folder

Example:

save 'data.txt', ntf // save notification signal to file
save 'data.txt', ntf.signal, 2 // save signal in 2-column format

• load — load floating point signal from a file in the scripts folder

Example:

signal = load('data.txt') // load data from file

C.4. NodeInfo commands

node — access to node information service

Examples:

node // access node info parameters
node.address // check node address
node.address = 5 // change node address

Parameters:

• node.address — Node address

206

• node.nodeName — Node name

• node.origin — origin [lat,long]

• node.location — Location of the node in [x,y,z] meters or [lat,long,z]

• node.speed — speed (meter/second)

• node.heading — heading (deg, 0 is North, clockwise)

• node.turnRate — turn rate (deg/s, clockwise)

• node.diveRate — dive rate (meter/second)

• node.mobility — true if the node is mobile, false if it is fixed

• node.time — node time (real-time clock)

• node.canForward — true if node has forwarding capability, false otherwise

C.5. Scheduler commands

scheduler — access to scheduling service

Commands:

• addsleep — schedule sleep and wakeup of the modem

Examples:

addsleep 1507014548, 1507014558 // sleep from epoch 1507014548 to 1507014558
addsleep 1507014558 // sleep immediately until 1507014548
addsleep 10.s.later, 20.s.later // sleep 10s later and wake up 20s later
addsleep 20.s.later // sleep immediately and wake up 20s later
addsleep 20.s.later, forever // sleep 20s later forever
addsleep // sleep immediately forever

• showsleep — shows sleep/wakeup schedule

Example:

showsleep // show schedule

• rmsleep — removes sleep/wakeup schedule

Example:

rmsleep '3bf9e744-b225-48f4' // removes sleep schedule with given id

C.6. Physical commands

207

phy — access to physical service

Examples:

phy // access physical parameters
phy[CONTROL] // access control channel parameters
phy[DATA] // access data channel parameters
phy << msg // send request msg to physical agent
phy.rxEnable = false // disable reception of frames

Commands:

• pclr — clear PHY queues

• plvl — get/set TX power level for all PHY channel types

Examples:

plvl // get all power levels
plvl -10 // set all power to -10 dB
plvl(-10) // alternative syntax
plvl = -10 // alternative syntax

Parameters:

The following parameters are available on all modems. Additional modem dependent parameters are
also available. For information on these parameters type "help modem".

• phy.MTU — maximum transmission unit (MTU) in bytes

• phy.RTU — recommended data transfer size in bytes

• phy.rxEnable — true if reception enabled

• phy.propagationSpeed — propagation speed in m/s

• phy.timestampedTxDelay — delay before TX of timestamped frames

• phy.time — physical layer time (us)

• phy.busy — true if modem is TX/RX a frame, false if idle

• phy.refPowerLevel — reference power level in dB re uPa @ 1m

• phy.maxPowerLevel — maximum supported power level (relative to reference)

• phy.minPowerLevel — minimum supported power level (relative to reference)

Channel Parameters:

The following parameters are available on all modems. Additional modem dependent parameters are
also available. For information on these parameters type "help modem".

• phy[].MTU — maximum transmission unit (MTU) in bytes

• phy[].RTU — recommended data transfer size in bytes

• phy[].dataRate — effective frame data rate (bps)

208

• phy[].frameDuration — frame duration (seconds)

• phy[].powerLevel — powel level used for transmission (relative to reference)

• phy[].errorDetection — number of bytes for error detection

• phy[].frameLength — frame length (bytes)

• phy[].maxFrameLength — maximum settable frame length (bytes)

• phy[].fec — forward error correction code

A value of 0 indicates no error correction. Other values represent various FEC codes from the
phy[].fecList. For example, a value of 1 means the first FEC code from the phy[].fecList, and a value of 2
means the second FEC code from that list.

• phy[].fecList — list of available forward error correction codes

LDPC1 - 1-rate LDPC FEC code LDPC2 - 1/2-rate LDPC FEC code LDPC3 - 1/3-rate LDPC FEC code LDPC4 -
1/4-rate LDPC FEC code LDPC5 - 1/5-rate LDPC FEC code LDPC6 - 1/6-rate LDPC FEC code ICONV2 - 1/2-rate
interleaved convolution code

The 1-rate LDPC code is only useful for OFDM, where unused bits in the last OFDM block are used to
provide FEC redundancy without loss in data rate.

C.7. Unet commands

unet — basic unet commands

Commands:

• ver — version information

• time — current platform time

• ls — list script files

• free — show free disk space

• dashboards — show list of dashboards

• iface — display/enable interfaces

Usage:

iface [iftype, port[, baud] [, settings]]

Examples:

// show all interfaces
iface

209

// enable AT commands on TCP port 5001
iface ATScriptEngine, 5001

// enable Groovy shell on TCP port 5002
iface GroovyScriptEngine, 5002

// enable AT commands on serial port /dev/ttyS0 at 9600 baud
iface ATScriptEngine, '/dev/ttyS0'

// enable Groovy shell on serial port /dev/ttyS0 at 115200 baud
iface GroovyScriptEngine, '/dev/ttyS0', 115200

// enable API connector on serial port /dev/ttyS0 at 115200 baud
// with settings: no partity, 8 bits, 1 stop bit
iface API, '/dev/ttyS0', 115200, 'N81'

// alternate syntax to enable AT commands on TCP port 5001
iface new ATScriptEngine(), 5001

• distance — compute distance between two points

Example:

distance([0,0], [100,100]) // distance between origin and (100,100)

• logs — list log files

Only log files with the default settings (logs/*.txt) are listed.

Example:

logs // list log files

• clrlogs — clear old log files

Old log files (logs/.txt) are deleted. The currently active log files (logs/-0.txt) are not deleted.

Example:

clrlogs // clear old log files

• tail — show the last few lines of the current log file

Examples:

210

tail // show last 10 lines of the current log file
tail 20 // show last 20 lines of the current log file

• file — file in the scripts folder

Example:

file('a.groovy').size() // get size of script file a.groovy
file('a.groovy').delete() // delete script file a.groovy
file('a.groovy').text // show contents of file a.groovy

C.8. Mac commands

mac — access to medium access control (MAC) service

Examples:

mac // list MAC parameters
mac << new ReservationReq(to: 27, duration: 1) // channel reservation request

Parameters:

• mac.channelBusy — indicates if the channel is busy

• mac.reservationPayloadSize — size of payload (bytes) carried in MAC PDU

• mac.ackPayloadSize — size of ack payload (bytes) carried in ACK PDU

• mac.maxReservationDuration — maximum reservation duration

• mac.recommendedReservationDuration — recommended reservation duration

C.9. Arp commands

arp — access to address resolution service

Commands:

• host — resolve hostname to address

Examples:

host 'redstar' // get address for host named "redstar"
rs = host('redstar') // save address of "redstar" in variable "rs"

211

C.10. Ranging commands

ranging — access to ranging service

Examples:

ranging // show ranging parameters
ranging[2] // show parameters for ranging to node 2
ranging << new RangeReq(to: 27) // get range to node 27
ranging << new BeaconReq() // transmit a beacon out

Parameters:

• ranging.phy — physical agent for ranging

• ranging.mac — MAC agent or null to disable MAC

• ranging.maxRange — default maximum range to peer node (m)

• ranging.channel — default channel for interrogation (CONTROL/DATA)

• ranging.ipreamble — default interrogation preamble (0 = none)

• ranging.rpreamble — default response preamble (0 = none)

• ranging.rsignal — default baseband response signal ([] = none)

• ranging.rdelay — default response delay (seconds)

• ranging.respond — automatically respond to an interrogation

• ranging.threshold — threshold for signal detection (0 to 1)

Node-specific parameters:

• ranging[].address — peer node address

• ranging[].channel — channel for interrogation (CONTROL/DATA)

• ranging[].ipreamble — interrogation preamble (0 = none)

• ranging[].isignal — baseband interrogation signal ([] = none)

• ranging[].rpreamble — response preamble (0 = none)

• ranging[].rsignal — baseband response signal ([] = none)

• ranging[].rdelay — response delay (seconds)

• ranging[].sync — PHY clock synchronization valid

• ranging[].lastSync — time of last synchronization (epoch milliseconds)

• ranging[].offset — PHY clock offset to peer node (microseconds)

• ranging[].lifetime — synchronization validity lifetime (seconds)

• ranging[].maxRange — maximum range to peer node (m)

• ranging[].data — payload data to piggyback on interrogation/response frame

212

• ranging[].threshold — threshold for signal detection (0 to 1)

Commands:

• range — get ranging information from a node

Examples:

range 21 // get range to node 21

• beacon — send a timestamped beacon

Examples:

beacon // broadcast a timestamped beacon

C.11. Remote commands

remote — access to remote service

Examples:

tell 2, 'hello' // send text message to node 2
fget 3, 'abc.txt' // get file abc.txt from node 3
fput 2, 'abc.txt' // send file abc.txt to node 2
rsh 3, 'reboot' // ask node 3 to reboot itself

Commands:

• tell — send a text message to remote node

Example:

tell 2, 'hello' // send text message to node 2

• fget — get file from remote node

fget can only get files from nodes with remote.enable = true

Example:

fget 3, 'abc.txt' // get file abc.txt from node 3

• fput — put file on remote node

fput can only put files from nodes with remote.enable = true

213

Examples:

fput 2, 'a.txt' // send file a.txt to node 2
fput 2, 'a.txt', 'abc' // create file a.txt on node 2
 // with content 'abc'

• rsh — run shell command on remote node

rsh can only execute commands on nodes with remote.enable = true

Example:

rsh 3, 'reboot' // ask node 3 to reboot itself

• ack — enable/disable acknowledments for remote commands

Examples:

ack on // enable acknowldegements for fput, rsh, tell
ack true // enable acknowldegements for fput, rsh, tell
ack off // disable acknowldegements for fput, rsh, tell
ack false // disable acknowldegements for fput, rsh, tell
ack // check current setting for acknowldegements

C.12. Router commands

router — access to routing service

Examples:

routes // display routing table
routes 2 // display routes to node 2
addroute 27, 29 // add a route to node 27 via node 29
delroute 'as7623' // delete route with UUID as7623
editroute 'as7623', metric: 5.0 // edit route to change metric
delroutesto 27 // delete all routes to node 27
delroutes // delete all routes
trace 27 // trace route to node 27
ping 27 // check if node 27 is accessible

Parameters:

• router.MTU — maximum data transfer size

• router.RTU — recommended data transfer size

• router.auto1hop — automatically assume single hop routes

• router.defaultLink — default link to use

Commands:

214

• routes — print routing table

Examples:

routes // display routing table
routes 2 // display routes to node 2

• addroute — add a route to the routing table

Example:

addroute 27, 29 // add a route to node 27 via node 29
addroute 27, 29, link2, false // add route on link2 with no reliability
addroute to: 27, metric: 3.2 // add route to 27 with metric 3.2

• editroute — edit a route in the routing table

The route UUID can be obtained by displaying the routing table using the 'routes' command.

Example:

editroute 'as731', metric: 2.1 // edit route to change metric
editroute 'as731', nextHop: 21 // edit route to change next hop

• delroute — delete a route from the routing table

The route UUID can be obtained by displaying the routing table using the 'routes' command.

Example:

delroute 'as7623' // delete route with UUID as7623

• delroutesto — delete all routes to specified node from the routing table

Example:

delroutesto 27 // delete all routes to node 27

• delroutes — delete all routes from the routing table

Example:

delroutes // delete all routes

rdp — access to route discovery/maintenance service

Examples:

215

rreq 27 // start route discovery to node 27
rreq 27, 3, 2, 10 // find <3-hop route to node 27 with 2 RREQs 10s apart
trace 27 // trace current route to node 27

Commands:

• rreq — initiate route discovery

With a single parameter, rreq finds up to 3-hop routes using 3 probes spaced 20 seconds apart.

Examples:

rreq 27 // start route discovery to node 27
rreq 27, 3, 2, 10 // find <3-hop route to node 27 with 2 RREQs 10s apart

• trace — trace route

Example:

trace 27 // trace current route to node 27
trace 27, 10000 // trace current route to node 27 with 10s timeout

• ping — ping node

Example:

ping 27 // ping node 27
ping 27, 5 // ping node 27, 5 times
ping 27, 5, 30000 // ping node 27, 5 times, with 30s timeout

C.13. SWTransport commands
SWTransport parameters:

• transport.maxRetries — maximum retries for reliable delivery

• transport.timeout — end-to-end ACK timeout

• transport.reportProgress — enable/disable progress reporting of transfer

• transport.dsp — datagram service provider used for communication

SWTransport commands:

• netstat — show status of ongoing transport agent connections

C.14. BasebandSignalMonitor commands

bbmon — baseband signal monitor

216

The baseband signal monitor records any signals received by it to a signal log file (called signal-*.txt).
The signals are encoded in base64 in the file. A Python package arlpy.unet is available though PyPi to
load these files.

Examples:

bbmon.enable = true // enable recording of baseband signals
bbmon.enable = false // disable recording of baseband signals

Parameters:

• bbmon.enable — enable/disable monitoring of baseband signals

C.15. StateManager commands

statemanager — access to state manager service

Commands:

• savestate — save state of all or specified agent in Groovy script format

Examples:

savestate 'pandan' // save current state of all agents
savestate 'pandan', 'phy' // save current state of specified agent
savestate 'pandan', phy // save current state of specified agent
savestate // save current state in "saved-state.groovy"

• clrstate — set current state as the baseline for savestate

Example:

clrstate // set baseline state
phy[1].powerLevel = -10 // change parameters
savestate // save changed parameters

C.16. CSMA commands
CSMA MAC parameters:

• mac.phy — physical agent used for carrier sensing

• mac.minBackoff — minimum backoff window (seconds)

• mac.maxBackoff — maximum backoff window (seconds)

• mac.reservationsPending — number of reservations in queue (read-only)

217

C.17. ReliableLink commands

uwlink — access to underwater data link service

Examples:

uwlink // access parameters
uwlink.maxRetries = 5 // set maximum retries for reliable delivery
uwlink << new DatagramReq(to: 2, data: [1,2,3], reliability: true)
 // send reliable datagram

Note that reliability is only supported on unicast datagrams.

Parameters:

• uwlink.MTU — maximum data transfer size

• uwlink.RTU — recommended data transfer size

• uwlink.maxRetries — maximum retries for reliable delivery

• uwlink.reservationGuardTime — guard period (s)

• uwlink.maxPropagationDelay — maximum propagation delay (s)

• uwlink.controlChannel — channel to use for control frames (CONTROL/DATA)

• uwlink.dataChannel — channel to use for data frames (CONTROL/DATA)

• uwlink.mac — medium access control (MAC) agent name to use (or 'none')

• uwlink.phy — physical layer agent name to use

C.18. RemoteControl commands
Parameters:

• remote.dsp — datagram service provider used for communication

• remote.shell — shell service provider used to run commands

• remote.cwd — working directory to load/save files

• remote.reliability — reliability to be requested on datagrams

• remote.enable — enable/disable remote file/shell operations

• remote.groovy — enable Groovy extensions for shell commands

When Groovy extensions are enabled, rsh commands can use a "me" variable to denote the requsting
node address. Commands starting with a "?" send their output back to the requesting node.

Examples:

218

rsh 3, 'tell me,"hello!"' // ask node 3 to send a text message to me
rsh 3, '?phy.MTU' // ask node 3 to send me the value of phy.MTU
rsh 3, '?ls' // ask node 3 to send me the list of files

C.19. ECLink commands

uwlink — access to underwater data link service

Examples:

uwlink // access parameters
uwlink.maxRetries = 5 // set maximum retries for reliable delivery
uwlink.status // show status of ongoing TX/RX
uwlink << new DatagramReq(to: 2, data: [1,2,3], reliability: true)
 // send reliable datagram

Note that reliability is only supported on unicast datagrams.

Parameters:

• uwlink.MTU — maximum data transfer size

• uwlink.RTU — recommended data transfer size

• uwlink.mac — medium access control (MAC) agent name to use (or 'none')

• uwlink.phy — physical layer agent name to use

• uwlink.controlChannel — channel to use for control frames (CONTROL/DATA)

• uwlink.dataChannel — channel to use for data frames (CONTROL/DATA)

• uwlink.guardTime — guard period (s)

• uwlink.maxPropagationDelay — maximum propagation delay (s)

• uwlink.maxRetries — maximum retries for reliable delivery

• uwlink.minBatchSize — minimum number of frames to send in each batch

• uwlink.maxBatchSize — maximum number of frames to send in each batch

• uwlink.reliableExtra — extra frames (fraction) for reliable TX

• uwlink.unreliableExtra — extra frames (fraction) for unreliable TX

• uwlink.status — show status of ongoing TX/RX on all links

C.20. Unet audio commands

modem — modem commands and parameters

Commands:

219

• reboot — restart network stack

• probe — send a channel probe signal

• staticIP — set static IP address

Only applicable for modems with configurable IP address

Examples:

staticIP // check current static IP address
staticIP '192.168.1.214' // set static IP address
staticIP none // remove static IP address
staticIP auto // automatic static IP in 192.168.42.0/256

• fan — cooling fan control

Only applicable for modems equipped with a cooling fan

Examples:

fan on // turn on cooling fan
fan off // turn off cooling fan
fan // check if cooling fan is on

• wakeup — send acoustic wakeup signal

Examples:

wakeup // send 10 wakeup tones at increasing power levels from -20 dB
wakeup 20, -30 // send 20 wakeup tones at increasing power levels from -30 dB
wakeup 5, -10, 1 // send 5 wakeup tones in steps of 1 dB starting from -10 dB
wakeup 10, -20, 2, 3000 // send 10 wakeup tones at 3 second interval in steps of 2 dB starting from
-20 dB

• ptail — show the last few lines of the current phy log file

Examples:

ptail // show last 10 lines of the current phy log file
ptail 20 // show last 20 lines of the current phy log file

Parameters:

• phy.vendor — modem vendor/make

• phy.model — modem model number

• phy.serial — modem serial number

• phy.post — power-on self-test error code (0 = success)

• phy.loopback — digital loopback enable

220

• phy.inhibit — detector inhibit length (samples)

• phy.fullduplex — full duplex mode enable

• phy.bpfilter — bandpass filter enable

• phy.isc — isotropic sign correlator enable

• phy.thermal — thermal information

• phy.fan — cooling fan enable

• phy.fanctl — cooling fan control threshold (deg C)

• phy.hpc — high-performance (low-drift) clock enable

• phy.voltage — power supply / battery voltage

• phy.poweramp — power-amplifier enable

• phy.standby —  power-amplifier auto-shutdown timeout (s)

Power amplifier is shutdown automatically after the specified idle time after the last transmission.

A value of 0 shutsdown the power amplifier immediately after a transmission, only if it was turned on
automatically for that transmission.

A value of -1 disables auto-shutdown.

Examples:

phy.standby = 15 // shutdown poweramp after 15 s idle time
phy.standby = -1 // disable auto-shutdown of poweramp

• phy.mute — power amplifier mute

• phy.preamp — preamplifier enable

• phy.gain — preamplifier gain (dB)

• phy.noise — ambient noise level (dB)

• phy.wakeupdelay — delay between wakeup signal and frame (ms)

• phy.pbsblk — passband streaming block size (samples)

• phy.pbscnt — number of passband data blocks to stream

Setting this parameter starts streaming of passband data for a specified number of blocks. A value of 0
stops streaming. A value of -1 enable streaming forever.

Example:

phy.pbscnt = 10 // stream 10 blocks of pasband data

• phy.npulses — number of pulses to send

Each TxBasebandSignalReq transmission is repeated phy.npulses number of times with a delay of
phy.pulsedelay ms between them.

221

• phy.pulsedelay — delay between pulses (ms)

Each TxBasebandSignalReq transmission is repeated phy.npulses number of times with a delay of
phy.pulsedelay ms between them.

• phy.adcrate — ADC sampling rate (Hz)

• phy.dacrate — DAC sampling rate (Hz)

• phy.downconvRatio — downconverter decimation factor

• phy.upconvRatio — upconverter interpolation factor

• phy.adc2rate — ADC2 sampling rate (Hz)

• phy.adc2channels — ADC2 channel count

• phy.adc2gain — ADC2 pre amplifier gain (dB)

Channel Parameters:

• phy[].modulation — modulation type

Examples:

phy[1] = 'none' // modulation disabled
phy[1] = 'loopback' // loopback mode
phy[1] = 'fhbfsk' // frequency-hopping binary FSK
phy[1] = 'ofdm' // coherent OFDM

• phy[].preamble — preamble (see Preamble class)

Examples:

// set 240-sample long hyperbolic up sweep
phy[1].preamble = Preamble.hfmUpSweep(240)

// use 1023-chip m-sequence with 50% bandwidth
phy[3].preamble = Preamble.mseq(1023,2)

• phy[].threshold — preamble detection threshold (0-1)

• phy[].basebandRx — baseband signal reception enable

• phy[].basebandExtra — extra baseband signal to capture (samples)

• phy[].valid — channel parameter validity

• phy[].test — test packet reception enable

When test mode is enables, a TxFrameReq causes a standard test frame to be transmitted. Any reception
is assumed to be a test frame, and BER is computed for the frame.

Channel Parameters for FHBFSK Modulation:

• phy[].fmin — lowest frequency bin (Hz)

222

• phy[].fstep — frequency bin spacing (Hz)

• phy[].hops — number of hops

• phy[].chiplen — number of chips per symbol

• phy[].tukey — tukey window enable

Channel Parameters for OFDM Modulation:

• phy[].nc — number of carriers

• phy[].np — cyclic prefix length

• phy[].ns — cyclic suffix length

• phy[].nz — number of zero carriers (read-only)

• phy[].bw — usable bandwidth fraction (0-1)

• phy[].psk — PSK modulation order (2/4)

• phy[].blks — number of OFDM blocks (read-only)

• phy[].sync — sync signal length (baseband samples)

223

Appendix D: MySimpleHandshakeMac
MySimpleHandshakeMac.groovy from Section 29.4:

import org.arl.fjage.*
import org.arl.fjage.param.Parameter
import org.arl.unet.*
import org.arl.unet.phy.*
import org.arl.unet.mac.*
import org.arl.unet.nodeinfo.*

class MySimpleHandshakeMac extends UnetAgent {

 ////// protocol constants

 private final static int PROTOCOL = Protocol.MAC

 private final static float RTS_BACKOFF = 2.seconds
 private final static float CTS_TIMEOUT = 5.seconds
 private final static float BACKOFF_RANDOM = 5.seconds
 private final static float MAX_PROP_DELAY = 2.seconds
 private final static int MAX_RETRY = 3
 private final static int MAX_QUEUE_LEN = 16

 ////// reservation request queue

 private Queue<ReservationReq> queue = new ArrayDeque<ReservationReq>(MAX_QUEUE_LEN)

 ////// PDU encoder/decoder

 private final static int RTS_PDU = 0x01
 private final static int CTS_PDU = 0x02

 private final static PDU pdu = PDU.withFormat {
 uint8('type') // RTS_PDU/CTS_PDU
 uint16('duration') // ms
 }

 ////// protocol FSM

 private enum State {
 IDLE, RTS, TX, RX, BACKOFF
 }

 private enum Event {
 RX_RTS, RX_CTS, SNOOP_RTS, SNOOP_CTS
 }

 private FSMBehavior fsm = FSMBuilder.build {

 int retryCount = 0
 float backoff = 0
 def rxInfo
 def rnd = AgentLocalRandom.current()

 state(State.IDLE) {
 action {
 if (!queue.isEmpty()) {
 after(rnd.nextDouble(0, BACKOFF_RANDOM)) {
 setNextState(State.RTS)

224

 }
 }
 block()
 }
 onEvent(Event.RX_RTS) { info ->
 rxInfo = info
 setNextState(State.RX)
 }
 onEvent(Event.SNOOP_RTS) {
 backoff = RTS_BACKOFF
 setNextState(State.BACKOFF)
 }
 onEvent(Event.SNOOP_CTS) { info ->
 backoff = info.duration + 2*MAX_PROP_DELAY
 setNextState(State.BACKOFF)
 }
 }

 state(State.RTS) {
 onEnter {
 Message msg = queue.peek()
 def bytes = pdu.encode(
 type: RTS_PDU,
 duration: Math.ceil(msg.duration*1000))
 phy << new TxFrameReq(
 to: msg.to,
 type: Physical.CONTROL,
 protocol: PROTOCOL,
 data: bytes)
 after(CTS_TIMEOUT) {
 if (++retryCount >= MAX_RETRY) {
 sendReservationStatusNtf(queue.poll(), ReservationStatus.FAILURE)
 retryCount = 0
 }
 setNextState(State.IDLE)
 }
 }
 onEvent(Event.RX_CTS) {
 setNextState(State.TX)
 }
 }

 state(State.TX) {
 onEnter {
 ReservationReq msg = queue.poll()
 retryCount = 0
 sendReservationStatusNtf(msg, ReservationStatus.START)
 after(msg.duration) {
 sendReservationStatusNtf(msg, ReservationStatus.END)
 setNextState(State.IDLE)
 }
 }
 }

 state(State.RX) {
 onEnter {
 def bytes = pdu.encode(
 type: CTS_PDU,
 duration: Math.round(rxInfo.duration*1000))
 phy << new TxFrameReq(
 to: rxInfo.from,
 type: Physical.CONTROL,
 protocol: PROTOCOL,

225

 data: bytes)
 after(rxInfo.duration + 2*MAX_PROP_DELAY) {
 setNextState(State.IDLE)
 }
 rxInfo = null
 }
 }

 state(State.BACKOFF) {
 onEnter {
 after(backoff) {
 setNextState(State.IDLE)
 }
 }
 onEvent(Event.SNOOP_RTS) {
 backoff = RTS_BACKOFF
 reenterState()
 }
 onEvent(Event.SNOOP_CTS) { info ->
 backoff = info.duration + 2*MAX_PROP_DELAY
 reenterState()
 }
 }

 } // of FSMBuilder

 ////// agent startup sequence

 private AgentID phy
 private int addr

 @Override
 void setup() {
 register Services.MAC
 }

 @Override
 void startup() {
 phy = agentForService(Services.PHYSICAL)
 subscribe(phy)
 subscribe(topic(phy, Physical.SNOOP))
 add new OneShotBehavior({
 def nodeInfo = agentForService(Services.NODE_INFO)
 addr = get(nodeInfo, NodeInfoParam.address)
 })
 add(fsm)
 }

 ////// process MAC service requests

 @Override
 Message processRequest(Message msg) {
 switch (msg) {
 case ReservationReq:
 if (msg.to == Address.BROADCAST || msg.to == addr)
 return new RefuseRsp(msg, 'Reservation must have a destination node')
 if (msg.duration <= 0 || msg.duration > maxReservationDuration)
 return new RefuseRsp(msg, 'Bad reservation duration')
 if (queue.size() >= MAX_QUEUE_LEN)
 return new Message(msg, Performative.FAILURE)
 queue.add(msg)
 fsm.restart() // tell fsm to check queue, as it may block if empty
 return new ReservationRsp(msg)

226

 case ReservationCancelReq:
 case ReservationAcceptReq:
 case TxAckReq:
 return new RefuseRsp(msg, 'Not supported')
 }
 return null
 }

 ////// handle incoming MAC packets

 @Override
 void processMessage(Message msg) {
 if (msg instanceof RxFrameNtf && msg.protocol == PROTOCOL) {
 def rx = pdu.decode(msg.data)
 def info = [from: msg.from, to: msg.to, duration: rx.duration/1000.0]
 if (rx.type == RTS_PDU)
 fsm.trigger(info.to == addr ? Event.RX_RTS : Event.SNOOP_RTS, info)
 else if (rx.type == CTS_PDU)
 fsm.trigger(info.to == addr ? Event.RX_CTS : Event.SNOOP_CTS, info)
 }
 }

 ////// expose parameters that are expected of a MAC service

 final int reservationPayloadSize = 0 // read-only parameters
 final int ackPayloadSize = 0
 final float maxReservationDuration = 65.535

 @Override
 List<Parameter> getParameterList() { // publish list of all exposed parameters
 return allOf(MacParam)
 }

 boolean getChannelBusy() { // considered busy if fsm is not IDLE
 return fsm.currentState.name != State.IDLE
 }

 float getRecommendedReservationDuration() { // recommended duration: one DATA packet
 return get(phy, Physical.DATA, PhysicalChannelParam.frameDuration)
 }

 ////// utility methods

 private void sendReservationStatusNtf(ReservationReq msg, ReservationStatus status) {
 send new ReservationStatusNtf(
 recipient: msg.sender,
 inReplyTo: msg.msgID,
 to: msg.to,
 from: addr,
 status: status)
 }

}

227

	Underwater Networks Handbook
	Table of Contents
	Preface
	Part I: Introduction to UnetStack
	Chapter 1. Introduction
	Chapter 2. Getting started
	Chapter 3. UnetStack basics

	Part II: Setting up underwater networks
	Chapter 4. Unet basics
	Chapter 5. Setting up small networks
	Chapter 6. Routing in larger networks
	Chapter 7. Wired and over-the-air links

	Part III: Building Unet applications
	Chapter 8. Interfacing with UnetStack
	Chapter 9. UnetSocket API
	Chapter 10. Portals
	Chapter 11. Wormholes
	Chapter 12. AT script engine

	Part IV: Understanding UnetStack services
	Chapter 13. Services and capabilities
	Chapter 14. Datagram service
	Chapter 15. Physical service
	Chapter 16. Baseband service
	Chapter 17. Ranging and synchronization
	Chapter 18. Node information
	Chapter 19. Address resolution
	Chapter 20. Medium access control
	Chapter 21. Single-hop links
	Chapter 22. Routing and route maintenance
	Chapter 23. Transport service
	Chapter 24. Remote access
	Chapter 25. State persistence
	Chapter 26. Scheduler
	Chapter 27. Shell

	Part V: Extending UnetStack
	Chapter 28. Developing your own agents
	Chapter 29. Implementing network protocols

	Part VI: Simulating underwater networks
	Chapter 30. Writing simulation scripts
	Chapter 31. Discrete event simulation
	Chapter 32. Modems and channel models

	Appendices
	Appendix A: FAQs and resources
	Appendix B: List of services
	Appendix C: Command reference
	Appendix D: MySimpleHandshakeMac

